Solution: We will use the
inverse function theorem to find the Jacobian matrix of $g$ at $f(2,1)$. Since $g$ is the inverse of $f$, we have
\[
Dg(f(x,y)) = \left( Df(x,y) \right) ^{-1},
\]
where $Dg$ and $Df$ are the derivative matrix of $g$ and $f$ respectively. Thus,
\begin{align*}
Dg(f(2,1)) & = \begin{bmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\[2ex]
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\
\end{bmatrix}_{(2,1)}^{-1} \\[2ex]
& = \begin{bmatrix}
2x & -2y \\
2y & 2x \\
\end{bmatrix}_{(2,1)}^{-1} = \begin{bmatrix}
4 & -2 \\
2 & 4 \\
\end{bmatrix}^{-1} .
\end{align*}
Since $\det A^{-1} = (\det A)^{-1} $, we have
\begin{align*}
\det \begin{bmatrix}
4 & -2 \\
2 & 4 \\
\end{bmatrix}^{-1} = \frac{1}{20}.
\end{align*}
Hence, the determinant of the Jacobian matrix of $g$ at $f(2,1)$ is equal to $\frac{1}{20} = 0.05$.