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Statement of the Theorem

Theorem 1 (Inverse Function Theorem). Suppose U ⊆ Rn is open, x0 ∈ U, f : U → Rn is C 1

and Df(x0) is invertible. Then there is a neighborhood V ⊆ U, W ⊆ Rn of x0 and f(x0) = y0

respectively and a C 1 function g :W → V (see Figure 1) such that

f(g(y)) = y and g(f(x)) = x,∀ x ∈ V and ∀ y ∈W.

Moreover,
Dg(f(x)) = (Df(x))−1

U

f

f(x0) = y0

x0

V

W

g

Figure 1

Before seeing the proof of the above theorem we will recall some of the theorems that we are going
to use in our proof.

Mean Value Inequality

Theorem 2. Let f : U ⊆ Rn → Rn be differentiable on the open set U . Let x,y ∈ U such that
[x,y]1 ⊆ U . Then

‖f(x)− f(y)‖ ≤ max
c∈[x,y]

‖Df(c)‖ · ‖x− y‖. (1)

Proof. See [3, p. 248].

Contraction Mapping Theorem

Definition 1 (Contraction Map). Let (X, d) be a metric space and φ : X → X be any function. If
there exists a number c ∈ (0, 1) such that for all x, y ∈ X

d(φ(x), φ(y)) ≤ c d(x, y), (2)

then φ is said to be a contraction map of X .
1line joining x and y
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Theorem 3. If X is a complete metric space, and if φ is a contraction map of X , then there exists a
unique x ∈ X such that φ(x) = x, i.e. φ has a unique fixed point.

Proof. See [2, p. 220].

Proof of the Theorem 1

Without loss of generality we can assume the following: (For an explicit definition see [1, p. 185])

1. x0 = 0 (By setting xnew = x− x0).

2. f(0) = 0 (by setting fnew(x) = f(xnew + x0)− f(x0)).
2

3. Df(0) = I
(

By setting fnew(x) = (Df(0))−1f(x)
)

. 3

Let ψ(x) = x − f(x). Clearly ψ ∈ C 1. Observe that, Dψ(0) = O. Since ψ ∈ C 1 and Dψ(0) = O,
implies there exists an r > 0 such that,

‖x‖ ≤ r =⇒ ‖Dψ(x)‖ ≤ 1

2
. (3)

r

r
2

x

∀ x ∈ B(0, r), ‖Dψ(x)‖ < 1/2

0
y

Figure 2

Using Theorem 2,
‖x‖ ≤ r =⇒ ‖ψ(x)‖ ≤ max

c∈[0,x]
‖Dψ(c)‖ ‖x‖ ≤ r

2
(4)

Fix y ∈ Rn with ‖y‖ < r
2 and define

φy(x) = x− f(x)︸ ︷︷ ︸
ψ(x)

+y (5)

2Observe that xnew + x0 ∈ U.
3Here f is the new function that we have defined in step 2.
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Using Equation (4),

‖x‖ ≤ r =⇒ ‖φy(x)‖ = ‖x− f(x) + y‖ ≤ ‖x− f(x)‖+ ‖y‖ < r.

So, due to continuity of φy, we can say that φy : B[0, r]→ B[0, r]. For any x,y ∈ B[0, r],

‖φy(x)− φy(y)‖ = ‖ψ(x)− ψ(y)‖ ≤
1

2
‖x− y‖ (follows from Theorem 2)

Now using Theorem 3, φy is a contraction map. So, φy has a unique fixed point, say xy ∈ B[0, r].
So, there exists a unique xy ∈ B[0, r] such that,

f(xy) = y.

Since ‖y‖ < r
2 =⇒ xy ∈ B(0, r). Now define,

W = B
(
0,
r

2

)
, V = f−1(W ) ∩ B(0, r) and g :W → V as g(y) = xy. (See Figure 3)

f

g

y0x0

r

U

V

W = B(0, r/2)

B(0, r)

Figure 3

Clearly, (f ◦ g)(y) = y; (g ◦ f)(x) = x, ∀x ∈ V and ∀y ∈W. Now we will prove that g ∈ C 1.

g is continuous : Let y, z ∈W. Let g(y) = u and g(z) = v. Consider,

‖ψ(u)− ψ(v)‖ ≤ 1

2
‖u− v‖

=⇒ ‖(f(u)− f(v))− (u− v)‖ ≤ 1

2
‖u− v‖

=⇒ ‖u− v‖ ≤ 2‖f(u)− f(v)‖
=⇒ ‖g(y)− g(z)‖ ≤ 2‖y − z‖ < ε

g is differentiable : Let y ∈ W and g(y) = x. We will prove that Dg(y) = (Df(x))−1. Let
Df(x) = A. SinceW is open, ∃k such that y+k ∈W. Set g(y+k) = x+h =⇒ h = g(y+k)−g(y).
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We want

g(y + k)− g(y)−A−1k
‖k‖

→ 0 as k→ 0.

⇐⇒ A(g(y + k)− g(y))− k

‖k‖
→ 0 as k→ 0.

⇐⇒ Ah− k

‖k‖
=
Ah− (f(x+ h)− f(x))

‖k‖
→ 0 as k→ 0.

⇐⇒ −(f(x+ h)− f(x))−Ah
‖h‖

‖h‖
‖k‖

→ 0 as k→ 0. (6)

Since, ‖h‖ ≤ 2‖k‖, h → 0 if k → 0. So, the limit in (6) is 0 as h → 0. Hence, g is differentiable.
And,

Dg(y) = (Df(g(y)))−1 (7)

Now, since Dg is a composition of the function y  Df(g(y)) and A  A−1 on the space of
invertible matrices. Since g is continuous and f ∈ C 1, Df is continuous. As Dg = i ◦Df ◦ g, where
i denotes the inverse of a matrix and the composition of continuous functions is continuous hence
y Dg(y) is continuous.

Remark: In the above theorem, if f ∈ C k then g ∈ C k.

Corollary 1. If f : Rn → Rn is C 1 and has the property that for every a ∈ Rn, Df(a) is non-singular.
Then f is ana open map.

Proof. Let U ⊂ Rn be any open set. We will show that f(U) is open. Let y ∈ f(U) =⇒ ∃ a ∈ U
such that f(a) = y. According to the hypothesis, Df(a) is non-singular, so using Theorem 1, there
exist neighborhoods V ⊂ U,W of a and f(a) respectively and a C 1 function g :W → V such that
f ◦ g = idW . So, W = f(g(W )) which is open and x ∈ W =⇒ g(x) ∈ V =⇒ x = f(g(x)) ∈
U =⇒ W ⊂ f(U). Hence, f is an open map.

Holomorphic Inverse Function Theorem in one Complex Variable

Theorem 4. Let f : C → C be a holomorphic map such that f(0) = 0 and Df(0) is non-singular.
Then there exists open sets U, V around the origin and g : V → U such that f ◦ g = idV , g ◦ f = idU
and g is holomorphic.

Proof. Let f(z) = u(x, y) + iv(x, y) where u, v : R2 → R. So we can write the function f : R2 → R2

given by f(x, y) = (u(x, y), v(x, y)). Given that,

• f(0, 0) = (0, 0)

• f is holomorphic implies f ∈ C∞.

• Df(0, 0) =
(
ux(0, 0) −vx(0, 0)
vx(0, 0) ux(0, 0)

)
and detDf(0, 0) = ux(0, 0)

2 + vx(0, 0)
2 6= 0.
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Hence from the real inverse function theorem there exists neighborhoods U, V around the origin
and g : V → U such that f ◦ g = idV and g ◦ f = idU . From inverse function theorem g will be C∞.
Now we will show that g is holomorphic function. Let f ′(0) = α. Consider

Dg(0, 0) =

(
ux(0, 0) −vx(0, 0)
vx(0, 0) ux(0, 0)

)−1
=

1

|α|2

(
Re(α) Im(α)
−Im(α) Re(α)

)
=

(
Re(α−1) −Im(α−1)
Im(α−1) Re(α−1)

)
.

As, Dg(0, 0) is C−linear, g is holomorphic

Implicit Function Theorem

Theorem 5. Suppose U ⊂ Rn+m is open and F : U → Rm is C 1. Writing a vector in Rn+m as
(
x
y

)
,

with x ∈ Rn and y ∈ Rm, suppose that F
(
x0

y0

)
= 0 and the m×m matrix ∂F

∂y

(
x0

y0

)
is non-singular.

Then there are neighborhoods V of x0 and W of y0 and a C 1 function φ : V →W so that

F

(
x
y

)
= 0,x ∈ V and y ∈W ⇐⇒ y = φ(x).

Moreover,

Dφ(x) = −
(
∂F

∂y

(
x

φ(x)

))−1
∂F

∂x

(
x

φ(x)

)
.

f

g

V

W

Z

x0

y0

Figure 4

Proof. Define f : Rn+m → Rn+m by

f

(
x
y

)
=

 x

F

(
x
y

) .
Since the linear map

Df

(
x0

y0

)
=

 I O

∂F
∂x

(
x0

y0

)
∂F
∂y

(
x0

y0

) 
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is invertible. Using Theorem 1 there are neighborhoods V ⊂ Rn of x0, W ⊂ Rm of y0, and
Z ⊂ Rn+m of 0 and a C 1 function g : Z → V ×W so that g is the inverse of f on V ×W (See
Figure 4). Now we define φ : V →W by(

x
φ(x)

)
= g

(
x
0

)
;

Since g is C 1 so is φ(x). Now, x

F

(
x

φ(x)

) = f

(
x

φ(x)

)
= f

(
g

(
x
0

))
=

(
x
0

)
=⇒ F

(
x

φ(x)

)
= 0.

On the other hand, if F
(
x
y

)
= 0, x ∈ V and y ∈W, then

(
x
y

)
= g

(
f

(
x
y

))
= g

 x

F

(
x
y

) =

g

(
x
0

)
=⇒ y = φ(x).

Now we will calculate the derivative of φ. Since, F
(

x
φ(x)

)
= 0, define h : V → Rm by h(x) =

F

(
x

φ(x)

)
. Then h is C 1 and

O = Dh(x) =
∂F

∂x

(
x

φ(x)

)
+
∂F

∂y

(
x

φ(x)

)
Dφ(x) =⇒ Dφ(x) = −

(
∂F

∂y

(
x

φ(x)

))−1
∂F

∂x

(
x

φ(x)

)
.

While proving the inverse function theorem we observe that the theorem only tells about the
existence of the inverse function, but the natural question arises is how will we find out the inverse.
So we will discuss the situation in one dimension.

An approximation of inverse function in one dimension

We saw that the inverse function theorem (Theorem 1) only guarantees the existence of the inverse
but it did not say anything about ”How to compute the inverse?”. As we have used the contraction
mapping theorem (Theorem 3) which is basically a limit of the sequence

xk+1 = φy(xk), k ≥ 1, x0 = 0.

We will see, the local inverse mapping g : W → V is the limit of the sequence of successive
approximations {gk}∞0 defined inductively on V by

g0(y) = 0, gk+1(y) = gk(y)− f(g(y)) + y (6)

for all y ∈W. Let us formalize it in one dimension.
Let f : R → R be a smooth function which is real analytic at 0 and f ′(0) = 1. We also assume
that f(0) = 0. We construct a local inverse g of f by defining g(y) to be the fixed point point of
the sequence given in Equation (6). f is real analytic at 0 and using the given conditions we can
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write f(x) = x+ a2x
2 + a3x

3 + . . . , |x| < ε, for some ε > 0. Now computing the sequence given in
Equation (6) around 0, gives

g1(y) = y

g2(y) = y − a2y2

g3(y) = y − a2y2 + (2a22 − a3)y3 + o(y4)

g4(y) = y − a2y2 + (2a22 − a3)y3 + (5a2a3 − a4 − 5a32)y
4 + o(y5)

(7)

Theorem 6. If the input function f for inverse function theorem is real analytic then the local
inverse g is also real analytic.

Proof. See [5, p 47]

Now from Theorem 6, there exists a function g which is real analytic at f(0) = 0. So we can write
g(y) = b0 + b1y + b2y

2 + b3y
3 + . . . . Again, g(0) = 0 =⇒ b0 = 0. Since g is the inverse of f , so for

every y in the neighborhood of 0, f(g(y)) = y. Using this we obtain,

b1 = 1

b2 = −a2
b3 = 2a22 − a3
b4 = 5a2a3 − a4 − 5a32

(8)

Comparing eq. (7) and eq. (8) we observe that our approximation by sequence is correct up to n
terms.

Application of Inverse Function Theorem in Manifold

In this section, we will give one of the major application of inverse function theorem which will be
useful for proving something is a submanifold. Before going ahead let us define some terminology.

Definition 2 (Submanifold). We say M ⊂ Rn is a k-dimensional submanifold if for any a ∈M, there
is a neighborhood W ⊂ Rn of a such that M ∩W is diffeomorphic4 to Rk.

Definition 3 (Regular Value). Let f : Rn → Rm be smooth map. Then a point p ∈ Rm is called a
regular value of f if for every a ∈ f−1{p}, the map

Df(a) : TaRn → TpRm

is surjective.

Lemma 1. Let f : Rn+m → Rm be a smooth map with f(0) = 0. Assume that 0 is a regular value of
f . Then f−1{0} is a submanifold of dimension n.

Proof. Let p =

(
px
py

)
∈ f−1{0} be given, where px ∈ Rn and py ∈ Rm. So f(p) = 0 and 0 is a

regular value of f , Df(p) is a surjective map and hence by multiplying with permutation matrices
we can assume that ∂f

∂y (p) is invertible. So using Implicit function theorem (theorem 5), there
exist neighborhoods V,W and Z of px,py and 0 respectively and a C 1 function φ : V → W

4Let f : A → B be a homeomorphism. Then it is called a diffeomorphism if f and f−1 are differentiable.
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such that for any
(
x
y

)
∈ f−1{0}, y = φ(x) (see Figure 4). Define U = f−1{0}

⋂
(V ×W ) and

O = Z ∩ Rn × {0} and ψ : U → O by (x, φ(x)) 7→ (x,0) which is a diffeomorphism. (Observe it is
just a projection).

Theorem 7. Let GL(n,R) be the set of all invertible matrices. Then SL(n,R) := {A ∈ GL(n,R) :
detA = 1} is a submanifold of dimension n2 − 1.

Proof. Define the map
sl : Rn×n ∼=M(n,R)→ R

by sl(A) = detA, which is a smooth map because detA is a polynomial in n2 variables. Since
SL(n,R) = sl−1{1} so it is enough to prove that 1 is a regular value. We will prove that for given
A ∈ sl−1{1}, Dsl(A) : TARn×n → T1R is a surjective map. Since the image is contained in R so
enough to prove that the directional derivative of sl is non zero at A in some direction. Consider
the directional derivative in the direction of A

lim
t→0

sl(A+At)− sl(A)
t

= lim
t→0

det (A+At)− 1

t
= n
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