MATRIX GROUPS

(MTH565)

Quiz 8

Thursday, 13th November 2025

Name:	
Roll Number:	
Obtained Marks:	/10

EXAMINATION INSTRUCTIONS

- 1. This is a **Closed Book Examination**.
- **2.** Answer all questions in the space provided on subsequent pages.
- 3. Show all necessary working steps clearly and legibly.
- **4.** State any theorems or results used. Only results discussed in lectures may be used without proof.
- **5.** The total point for the problems is 11, but the maximum obtainable score is 10.

6.	Duration: 30 minutes.	

Good Luck!

Problem Set

→ Problem 1 —

Let G_1 and G_2 be two matrix groups with Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2 , respectively. We have seen that if $f:G_1\to G_2$ is a smooth homomorphism, then the differential map $df_I:\mathfrak{g}_1\to\mathfrak{g}_2$ is a Lie algebra homomorphism.

(i) Show that for any $a \in G_1$ and $B \in \mathfrak{g}_2$, we have

$$df_I(Ad_a(B)) = Ad_{f(a)}(df_I(B)).$$

(ii) Use the above result to show that if f is an isomorphism, then df_I is a Lie algebra isomorphism.

2 + 2

→ Problem 2 —

Let G be a matrix group and $U \in G$. Show that each of the function is differentiable and determine its derivative at I.

- (i) $L_U: G \to G$, $A \mapsto UA$,
- (ii) $R_U: G \to G$, $A \mapsto AU$,
- (iii) $C_U: G \to G$, $A \mapsto UAU^{-1}$.

1 + 1 + 2

--- Problem 3

It is given that for $A = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}$, the exponential is

$$\exp(A) = \begin{pmatrix} \cosh a & \sinh a \\ \sinh a & \cosh a \end{pmatrix}.$$

Find the Lie algebra of the matrix group

$$G = \left\{ A \in GL_2(\mathbb{R}) : A^T Q A = Q \right\}, \quad ext{where } Q = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

3

SOLUTION SPACE

Solution (continued)

Solution (continued)