MATRIX GROUPS

(MTH565)

Quiz 5

Thursday, 09^{th} October 2025

Name:		
Roll Number:		
Obtained Marks:	/10	

EXAMINATION INSTRUCTIONS

- 1. This is a **Closed Book Examination**.
- **2.** Answer all questions in the space provided on subsequent pages.
- 3. Show all necessary working steps clearly and legibly.
- **4.** State any theorems or results used. Only results discussed in lectures may be used without proof.
- **5.** The total point for the problems is 12, but the maximum obtainable score is 10.

6.	Duration: 30					

Problem Set

— Problem 1 ——

Recall that the dimension of a matrix group G is the dimension of corresponding Lie algebra $\mathcal{L}(G)$. Find the Lie algebra of $O(n,\mathbb{R})$ and hence deduce the dimension of $O(n,\mathbb{R})$.

3 + 2 = 5

→ Problem 2 _____

For $x \in \mathbb{R}$, consider the matrix

$$A = \begin{pmatrix} 0 & x \\ -x & 0 \end{pmatrix}.$$

Show that $e^A \in SO(2,\mathbb{R})$. (Note that you need to show e^A is a rotation matrix with some rotation angle).

3

Prove the following:

- 1. For any matrix $A \in M_n(\mathbb{K})$, the matrix $e^A \in GL_n(\mathbb{K})$.
- 2. For any $A, B \in M_n(\mathbb{K})$ with $A \in GL_n(\mathbb{K})$,

$$e^{ABA^{-1}} = Ae^BA^{-1}.$$

2 + 2 = 4

You can use the following things:

• For $A(t) \in M_n(\mathbb{K})$,

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \det A(t) = \operatorname{trace}(A'(0)).$$

• For any matrix $A \in M_n(\mathbb{K})$,

$$\det e^A = e^{\operatorname{trace}(A)}$$
.

SOLUTION SPACE

Solution (continued)

Solution (continued)