MATRIX GROUPS

(MTH565)

Quiz 4

Thursday, 18th September 2025

Name:	
Roll Number:	
Obtained Marks:	/10

EXAMINATION INSTRUCTIONS

- 1. This is a **Closed Book Examination**.
- **2.** Answer all questions in the space provided on subsequent pages.
- 3. Show all necessary working steps clearly and legibly.
- **4.** State any theorems or results used. Only results discussed in lectures may be used without proof.
- **5.** The total point for the problems is 12, but the maximum obtainable score is 10.

6.	Duration: 30 minutes.

Problem Set

→ Problem 1 —

Prove or disprove:

- (i) O(5) is isomorphic to $SO(5) \times \{1, -1\}$.
- (ii) O(2) is isomorphic to $SO(2) \times \{1, -1\}$.

3 + 2 = 5

Define the Affine group as

$$\operatorname{Aff}_n(\mathbb{F}) := \left\{ \begin{pmatrix} A & \mathbf{v} \\ 0 & 1 \end{pmatrix} : A \in GL_n(\mathbb{F}) \text{ and } \mathbf{v} \in \mathbb{F}^n \right\}.$$

Given any $X = \begin{pmatrix} A & \mathbf{v} \\ 0 & 1 \end{pmatrix} \in \mathrm{Aff}_n(\mathbb{F})$, we can identify it with a functions $f(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$ from \mathbb{F}^n to \mathbb{F}^n . Define a translated line

$$\ell_{\mathbf{v}_0} = \{\mathbf{v}_0 + \mathbf{v} : \mathbf{v} \in W\},\,$$

where $\mathbf{v}_0 \in \mathbb{F}^n$ and $W \subset \mathbb{F}^n$ is an 1-dimensional \mathbb{F} -subspace. Prove that f sends translated lines in \mathbb{F}^n to translated lines in \mathbb{F}^n .

3

___ Problem 3 _____

Recall that the translational group is defined as

$$\operatorname{Trans}(\mathbb{R}^n) = \{ f \in \operatorname{Isom}(\mathbb{R}^n) : f(\mathbf{x}) = \mathbf{x} + \mathbf{v}, \mathbf{v} \in \mathbb{R}^n \}.$$

- (i) Show that Trans(\mathbb{R}^n) can be thought as a subset of $GL_{n+1}(\mathbb{R})$.
- (ii) Assume that $\operatorname{Trans}(\mathbb{R}^n)$ is a subgroup of $\operatorname{Isom}(\mathbb{R}^n)$, show that $\operatorname{Trans}(\mathbb{R}^n)$ is a normal subgroup of $\operatorname{Isom}(\mathbb{R}^n)$.

1 + 3 = 4

SOLUTION SPACE

Solution (continued)

Solution (continued)