MATRIX GROUPS

(MTH565)

Quiz 3

Thursday, 4^{th} September 2025

Name: ______

Roll Number: ______

Obtained Marks: ______/10

EXAMINATION INSTRUCTIONS

- 1. This is a **Closed Book Examination**.
- **2.** Answer all questions in the space provided on subsequent pages.
- 3. Show all necessary working steps clearly and legibly.
- **4.** State any theorems or results used. Only results discussed in lectures may be used without proof.
- **5.** The total point for the problems is 12, but the maximum obtainable score is 10.

6.	Duratio	n:	30) m	inu	tes	S.												
								 	 	 	 	 	_	 	 	 	_	 	

Problem Set

— Problem 1 —

True/False problems. If the statement is true, then prove it otherwise provide a counterexample or disprove it.

Let D_r be the set of $n \times n$ real matrices with determinant r.

- (i) D_0 is a closed set in $M_n(\mathbb{R})$.
- (ii) $GL_n(\mathbb{R})$ is a closed set in $M_n(\mathbb{R})$.
- (iii) $\bigcup_{r \in \mathbb{R} \setminus \{0\}} D_r$ is compact in $M_n(\mathbb{R})$.
- (iv) $O_n(\mathbb{R})$ is closed in $M_n(\mathbb{R})$.
- (v) A continuous function maps a bounded set to bounded set.

$$1+2+1+2+1=6$$

→ Problem 2 —

Consider the set of orthogonal matrices with real entries, that is, $O_n(\mathbb{R})$. We say that a set $X \subseteq O_n(\mathbb{R})$ is open (closed) in $O_n(\mathbb{R})$ if there exists an open (closed) set $K \subseteq M_n(\mathbb{R})$ such that $X = K \cap O_n(\mathbb{R})$.

- (i) Is SO(n) closed in $O_n(\mathbb{R})$?
- (ii) Is it open in $O_n(\mathbb{R})$?

2 + 2 = 4

— Problem 3 ——

Consider the dot product in \mathbb{R}^n defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$$
, for $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$.

Prove that a matrix $A \in O_n(\mathbb{R})$ if and only if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle A\mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.

2

SOLUTION SPACE

Solution (continued)

Solution (continued)