MATRIX GROUPS

(MTH565)

Quiz 2

Thursday, 28^{th} August 2025

Name:		
Roll Number:		
Obtained Marks:	/10	

EXAMINATION INSTRUCTIONS

- 1. This is a **Closed Book Examination**.
- **2.** Answer all questions in the space provided on subsequent pages.
- 3. Show all necessary working steps clearly and legibly.
- **4.** State any theorems or results used. Only results discussed in lectures may be used without proof.
- **5.** The total point for the problems is 11, but the maximum obtainable score is 10.

6.	Duration: 30 minutes.	
		-

Problem Set

(i) Determine the groups $GL_1(\mathbb{C})$, $SL_1(\mathbb{C})$, $O_1(\mathbb{C})$ and $SO_1(\mathbb{C})$.

 $0.5 \times 4 = 2$

(ii) Find the inverse of the matrix $\begin{bmatrix} 5 & 3 \\ 2 & 3 \end{bmatrix}$ in $GL_2(\mathbb{Z}_{11})$.

2

→ Problem 2

(i) Prove that $SU(2)=\left\{\begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix}: a,b\in\mathbb{C} \text{ and } |a|^2+|b|^2=1\right\}.$

2

(ii) Show that SO(3) is a normal subgroup of O(3). Further identify the quotient group O(3)/SO(3) (you need to prove that which space this quotient group is isomorphic to).

 $\boxed{1+2=3}$

--- Problem 3

(i) Is $SL_2(\mathbb{Z})$ a subgroup of $GL_2(\mathbb{R})$ with usual matrix multiplication operation?

1

(ii) Write all the elements of $O_2(\mathbb{Z})$ and $SO_2(\mathbb{Z})$.

 $0.5 \times 2 = 1$

SOLUTION SPACE

Solution (continued)

Solution (continued)