MATRIX GROUPS (MTH565) **Quiz 1: Solution** Wednesday, 20th August 2025 Good Luck!

Problem Set

→ Problem 1 —

Let us consider ordered bases of \mathbb{R}^3 as follows:

$$\mathcal{B} = \{(1,0,0), (3,3,3), (0,2,0)\}, \quad \mathcal{C} = \{(1,1,0), (0,0,1), (0,1,1)\}.$$

- (i) Write the coordinates of vector $\mathbf{v} = (2, -1, 3)$ with respect to basis \mathcal{B} .
- (ii) Let $P_{\mathcal{C} \leftarrow \mathcal{B}}$ denote the change of basis matrix from \mathcal{B} to \mathcal{C} . Determine the matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$.
- (iii) Hence, or otherwise, determine $P_{\mathcal{B}\leftarrow\mathcal{C}}$.
- (iv) What is the relationship between $P_{\mathcal{B}\leftarrow\mathcal{C}}$ and $P_{\mathcal{C}\leftarrow\mathcal{B}}$?
- (v) Calculate $P_{\mathcal{B}\leftarrow\mathcal{C}}\begin{bmatrix} 2\\6\\-3 \end{bmatrix}$.

SOLUTION SPACE

Write your solution from the next page.

Begin Your Solution

(i) Writing the coordinates of \mathbf{v} with respect to the basis \mathcal{B} :

$$\alpha(1,0,0) + \beta(3,3,3) + \gamma(0,2,0) = (2,-1,3) \implies (\alpha + 3\beta, 3\beta + 2\gamma, 3\beta) = (2,-1,3)$$

 $\implies \beta = 1, \alpha = -1, \text{ and } \gamma = -2.$

Thus,

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} -1\\1\\-2 \end{bmatrix}$$

(ii) In order to determine the change of basis matrix, we need to write the basis \mathcal{B} in terms of

the basis C. That is, if

$$\mathcal{B} = \{ \mathbf{v}_1, ..., \mathbf{v}_n \} \text{ and } \mathcal{C} = \{ \mathbf{w}_1, ..., \mathbf{w}_n \},$$

then

$$P_{\mathcal{C}\leftarrow\mathcal{B}}=\Big[[\mathbf{v}_1]_{\mathcal{C}},\ldots,[\mathbf{v}_n]_{\mathcal{C}}\Big].$$

Let

$$\mathbf{v}_1 = (1,0,0), \mathbf{v}_2 = (3,3,3), \text{ and } \mathbf{v}_3 = (0,2,0).$$

For any $(a, b, c) \in \mathbb{R}^3$,

$$(a,b,c) = \alpha(1,1,0) + \beta(0,0,1) + \gamma(0,1,1) = (\alpha,\alpha + \gamma,\beta + \gamma).$$

Therefore,

$$(\alpha, \alpha + \gamma, \beta + \gamma) = (1, 0, 0) \implies \alpha = 1, \gamma = -1, \beta = 1$$

$$(\alpha, \alpha + \gamma, \beta + \gamma) = (3, 3, 3) \implies \alpha = 3, \gamma = 0, \beta = 3$$

$$(\alpha, \alpha + \gamma, \beta + \gamma) = (0, 2, 0) \implies \alpha = 0, \gamma = 2, \beta = -2.$$

Hence,

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 3 & -2 \\ -1 & 0 & 2 \end{bmatrix}$$

(iii) Similarly to determine $P_{\mathcal{B}\leftarrow \mathcal{C}}$, we will write each element of \mathcal{C} in terms of \mathcal{B} . Again for any

 $(a, b, c) \in \mathbb{R}^3$, we have

$$(a,b,c) = \alpha(1,0,0) + \beta(3,3,3) + \gamma(0,2,0) = (\alpha + 3\beta, 3\beta + 2\gamma, 3\beta).$$

Therefore,

$$(\alpha + 3\beta, 3\beta + 2\gamma, 3\beta) = (1, 1, 0) \implies \beta = 0, \alpha = 1, \gamma = \frac{1}{2}$$

$$(\alpha + 3\beta, 3\beta + 2\gamma, 3\beta) = (0, 0, 1) \implies \beta = \frac{1}{3}, \alpha = -1, \gamma = -\frac{1}{2}$$

$$(\alpha + 3\beta, 3\beta + 2\gamma, 3\beta) = (0, 1, 1) \implies \beta = \frac{1}{3}, \alpha = -1, \gamma = 0.$$

Thus,

$$P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix}$$

(iv) The matrices $P_{\mathcal{B}\leftarrow\mathcal{C}}$ and $P_{\mathcal{C}\leftarrow\mathcal{B}}$ are inverses of each other, that is,

$$P_{\mathcal{B}\leftarrow\mathcal{C}}P_{\mathcal{C}\leftarrow\mathcal{B}}=I_3.$$

(v) We want to calculate $P_{\mathcal{B}\leftarrow\mathcal{C}}\begin{bmatrix}2\\6\\-3\end{bmatrix}$,

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}.$$