Matrix Groups: Homework #12

Based on adjoint representation

Dr. Sachchidanand Prasad

Theory

1. Recall that for any matrix group G, and for any $g \in G$, the conjugation

$$C_g: G \to G, \quad h \mapsto ghg^{-1}$$

is a smooth isomorphism and the derivative $\left(dC_g\right)_{\tau}:\mathfrak{g}\to\mathfrak{g}$ is denoted by $\mathrm{Ad}_g.$

$$\mathrm{Ad}_g(X) = gXg^{-1}.$$

2. The *Lie bracket* of two vectors $A, B \in \mathfrak{g}$ is defined as

$$[A, B] := \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \operatorname{Ad}_{a(t)}(B) = AB - BA,$$

where a(t) is any differentiable path in G with a(0) = I and a'(0) = A.

- 3. Let $f:G_1\to G_2$ be matrix group homomorphism with Lie algebras $\mathfrak{g}_1,\mathfrak{g}_2$. Let $f:G_1\to G_2$ be a smooth homomorphism. Then the derivative $\mathrm{d} f_I:\mathfrak{g}_1\to\mathfrak{g}_2$ is a Lie algebra homomorphism.
- 4. The map Ad_q is a vector space isomorphism and hence induces a map

$$\mathrm{Ad}: G \to \mathrm{GL}(n,\mathbb{R}), \quad g \mapsto \mathrm{Ad}_g.$$

This is called the *adjoint representation* of G.

5. We can pass from the representation of the matrix group to its Lie algebra by taking the derivative at the identity, which we will denote by ad. For any $X \in \mathfrak{g}$,

$$\operatorname{ad}_X: \mathfrak{g} \to \mathfrak{g}, \quad Y \mapsto [X, Y].$$

Problem 1

Use the definition of the Lie bracket to prove the *Jacobi identity* for a lie algebra \mathfrak{g} . That is, for any $A,B,C\in\mathfrak{g}$, show that

$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0.$$

Problem 2

- i) Use (3) to show that smoothly isomorphic matrix groups have isomorphic Lie algebras.
- ii) We have seen that the converse need not be true. For example, $O(n, \mathbb{R})$ and $SO(n, \mathbb{R})$ has the same Lie algebra but we will prove that the Lie groups are not isomorphic.
 - a) Show that $SO(n, \mathbb{R})$ is a normal subgroup of $O(n, \mathbb{R})$ of index 2.
 - b) $SO(n, \mathbb{R})$ does not have a normal subgroup of index 2.

Problem 3

The goal of this exercise is to show that for any $X \in \mathfrak{g}$, we have $\mathrm{Ad}_{e^X} = e^{\mathrm{ad}_X}$.

- i) Show that $(d\mathrm{Ad})_{I(X)}=\mathrm{ad}_X$ for any $X\in\mathfrak{g}.$
- ii) Let G_1 and G_2 be two matrix groups with Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2 respectively. Let $f:G_1\to G_2$ be C^1 homomorphism. Prove that for all $v\in\mathfrak{g}_1$, $f(e^v)=e^{\mathrm{d}f_I(v)}$. Hence, conclude that $\mathrm{Ad}_{e^X}=e^{\mathrm{ad}_X}$.

Problem 4

Let G_1, G_2 be matrix groups with Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2 respectively. Suppose that $f: G_1 \to G_2$ is a smooth homomorphism. If $df_I: \mathfrak{g}_1 \to \mathfrak{g}_2$ is bijective, prove that $df_g: T_gG_1 \to T_{f(g)}G_2$ is bijective for all $g \in G_1$.

Problem 5

Let G be a path connected matrix group, and let U be a neighbourhood of I in G. Prove that U generates G, which means that every element of G is equal to a finite product $g_1g_2...g_k$ where $g_i \in U$ for i=1,2,...,k.

Problem 6

For a matrix group G of dimension n, prove that the function $Ad: G \to GL(n, \mathbb{R})$ is smooth.