Matrix Groups: Homework #9

Based on matrix exponential and Lie algebra $\textit{Dr. Sachchidan} \ \textit{And Prasad}$

Problem 1

For all $A,B\in M_n(\mathbb{K})$ with $A\in GL_n(\mathbb{K}),$ show that

$$e^{ABA^{-1}} = Ae^BA^{-1}.$$

Problem 2

Prove that for any $A \in M_n(\mathbb{K})$,

$$\left(e^A\right)^* = e^{A^*}.$$

Problem 3

- 1. Let $A=\operatorname{diag}(a_1,a_2,...,a_n)\in M_n(\mathbb{R}).$ Calculate $e^A.$ Using this, give a proof that $\operatorname{det}\left(e^A\right)=e^{\operatorname{trace}(A)}.$
- 2. A matrix A is said to be *similar* to B if there exists an invertible matrix P such that $B = P^{-1}AP$. Give a proof that $\det(e^A) = e^{\operatorname{trace}(A)}$ when A is similar to a diagonal matrix.

Problem 4

Let $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Calculate e^A .

Problem 5

Find the Lie algebra of the following matrix groups.

- 1. SO(n) and $\dim SO(n) = \frac{n(n-1)}{2}$.
- 2. U(n) and dim $U(n) = n^2$.
- 3. Sp(n) and dim $Sp(n) = 2n^2 + n$.

Problem 6

Recall that

$$UT_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) : A \text{ is upper triangular}\}.$$

Describe the Lie algebra of $UT_n(\mathbb{K})$.

Problem 7

Prove that the Lie algebra of O(3) is isomorphic (as a vector space) to \mathbb{R}^3 .

Problem 8

Let G = SU(2). Denote

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -\iota \\ \iota & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and $A_j = \iota \sigma_j$ for j = 1, 2, 3.

- 1. For j=1,2,3, find $\exp\bigl(tA_j\bigr)$ and show that it is in G.
- 2. Explain why part (1) tell you that A_1,A_2 and A_3 are in the Lie algebra $\mathcal{L}(G).$
- 3. Let

$$W = \left\{ \begin{pmatrix} u\iota & v + w\iota \\ -v + w\iota & -u\iota \end{pmatrix} : u, v, w \in \mathbb{R} \right\}$$

show that every element of W can be written as a real linear combination of A_1, A_2 and A_3 .

4. Explain why $\mathcal{L}(G) = W$.

Problem 9

Show that for G = SU(n), the Lie algebra is

$$\mathcal{L}(G)=\mathfrak{su}(n)=\{A\in M(n,\mathbb{C}): A^*+A=0 \quad \text{and} \quad \mathrm{tr}(A)=0\}.$$

Problem 10

For $\alpha = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$, $a \in \mathbb{R}$, show that $e^{\alpha} \in SO(2)$.