Matrix Groups: Homework #7

Based on orthogonal groups

Dr. Sachchidanand Prasad

Problem 1

Let $f = f_n : \mathbb{C}^n \to \mathbb{R}^{2n}$ be defined as

$$f(a_1+\iota b_1,...,a_n+\iota b_n)=(a_1,b_1,...,a_n,b_n).$$

(i) Show that for any $v, w \in \mathbb{C}$,

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle_{\mathbb{C}} = \langle f(\boldsymbol{v}), f(\boldsymbol{w}) \rangle_{\mathbb{R}} + \iota \langle f(\boldsymbol{v}), f(\iota \boldsymbol{w}) \rangle_{\mathbb{R}}.$$

(ii) Show that $\{v_1,v_2,...,v_n\}\subset\mathbb{C}$ is an orthogonal basis if and only if $\{f(v_1),f(\iota v_1),...,f(v_n),f(\iota v_n)\}$ is an orthonormal basis of \mathbb{R}^{2n} .

Problem 2

In this problem we will prove the Cauchy-Schwarz inequality. For any $v, w \in \mathbb{F}^n$,

$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| \le ||\boldsymbol{v}|| \cdot ||\boldsymbol{w}||.$$

Let $v, w \in \mathbb{F}^n$. Let us denote $\langle v, w \rangle =: \alpha$.

(i) Show that for any $\lambda \in \mathbb{F}$,

$$\|\lambda \boldsymbol{v} + \boldsymbol{w}\|^2 = |\lambda|^2 \|\boldsymbol{v}\|^2 + 2 \operatorname{Re}(\lambda \alpha) + \|\boldsymbol{w}\|^2.$$

(ii) Choose $\lambda = -rac{ar{lpha}}{\|oldsymbol{v}\|^2}$ to conclude

$$|\alpha| \le \|\boldsymbol{v}\| \cdot \|\boldsymbol{w}\|.$$

(iii) Deduce when does the equality hold in the above inequality.

Problem 3

Remember the map $\rho_n:M_{n(\mathbb{C})}\to M_{2n}(\mathbb{R}).$ Suppose instead of taking $f(a_1+\iota b_1,...,a_n+\iota b_n)=(a_1,b_1,...,a_n,b_n)$ if we take $f(a_1+\iota b_1,...,a_n+\iota b_n)=(a_1,a_2,...,a_n,b_1,...,b_n)$ then how must ρ_n be defined so that the diagram commutes.