Matrix Groups: Homework #6

Based on topology of matrix groups

Dr. Sachchidanand Prasad

Problem 1

Let (M,d) and (N,ρ) be two metric space and $f:M\to N$ be a conitnuous function. Prove or disprove the statements. If the statement is true, then prove it and if false, provide a counterexample.

- 1. If U is an open (closed) set in M, then f(U) is open (closed) in N.
- 2. If K is boundedn in M, then f(K) is also bounded in N.
- 3. If K is compact in M, then f(K) is also compact in N.
- 4. If K is bounded (compact) in N, then $f^{-1}(K)$ is bounded (compact) in M.

Problem 2

Let

$$M_r = \{ A \in M_n(\mathbb{R}) : \det A = r \} \text{ and } T_r = \{ A \in M_n(\mathbb{R}) : \operatorname{tr}(A) = r \},$$

where $\operatorname{tr} A$ denotes the trace of A.

- 1. Are M_r , T_r open? Are they closed?
- 2. Are M_r , T_r bounded?
- 3. Are M_r , T_r compact?

Problem 3

Let $M_n(\mathbb{R})$ is equipped with the Euclidean metric. Then prove that the following maps are conitnuous.

- 1. $\det: M_n(\mathbb{R}) \to M_n(\mathbb{R}), A \mapsto \det A.$
- $2. \ {\rm tr}: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \quad A \mapsto {\rm tr}\, A.$
- $\begin{array}{l} {\rm 3.} \ \, \tau:M_n(\mathbb{R}) \to M_n(\mathbb{R}), \quad A \mapsto A^T. \\ \\ {\rm 4.} \ \, \mu:M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R}), \quad (A,B) \mapsto A \cdot B. \end{array}$
- 5. $\iota: GL_n(\mathbb{R}) \to GL_n(\mathbb{R}), \quad A \mapsto A^{-1}.$

Problem 4

We define the *inner product* on \mathbb{F}^n , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , as follows. Let $z = (z_1, ..., z_n)$ and w = $(w_1, ..., w_n)$. Then

$$\langle z, w \rangle \coloneqq \sum_{j=1}^n z_j \bar{w}_j.$$

The **norm** on \mathbb{F}^n is defined as $||z|| := \sqrt{\langle z, z \rangle}$. We define the following:

• Vectors x and y are called *orthogonal* if $\langle x, y \rangle = 0$.

- The vectors x and y are called *orthonormal* if they are orthogonal and ||x|| = 1 = ||y||.
- A basis $\mathcal{B}=\{v_1,...,v_n\}$ of a vector space V is called an **orthonormal basis** if $\langle v_i,v_j\rangle=\delta_{ij}$, where $\delta_{ij}=0$ if $i\neq j$ and 1 if i=j.

Now prove the following are equivalent.

- (i) A matrix $A \in O_n(\mathbb{R})$, that is, $AA^T = I = A^TA$.
- (ii) $\langle A \boldsymbol{x}, A \boldsymbol{y} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$ for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.
- (ii) The rows of A form an orthonormal basis of \mathbb{R}^n .