# Matrix Groups: Homework #4

Based on group and field Dr. Sachchidanand Prasad

## Problem 1

In a field  $\mathbb{F}$ , prove that  $a \cdot b = 0$ , then either a = 0 or b = 0.

### **Problem 2**

Let

$$GL(\mathbb{R}^n) = \{T : \mathbb{R}^n \to \mathbb{R}^n : T \text{ is linear and invertible}\}.$$

Show that  $GL(\mathbb{R}^n)$  is a group under composition of functions. Can you think of a relation between  $GL(\mathbb{R}^n)$  and  $GL_n(\mathbb{R})$ ?

#### Problem 3

We have seen in the lectures that  $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$  is a rotation matrix (rotation in the counterclockwise direction by an angle  $\theta$ ).

Now, let  $T_{\theta}$  denote the reflection about the line  $L_{\theta}$  through the origin that makes an angle  $\theta$  with the x-axis. Write the matrix of  $T_{\theta}$ . Check whether the set  $\{T_{\theta}: \theta \in \mathbb{R}\}$  of all such reflections forms a group under matrix multiplication.



Figure 1: Reflection about the line  $L_{ heta}$ 

## **Problem 4**

Show that the set of all rotations and reflections (described in the previous problem) is a group under matrix multiplication. Can you identify this group?