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1 Scalar Product Space

Lecture–1

1.1 Introduction

Definition 1.1. A Riemannian manifold (M0,g0) is a smooth paracompact manifold
with a positive definite inner product

g0

∣∣∣
p

: TpM0 × TpM0→R

on each tangent space TpM0.

In addition, if X,Y are smooth vector fields on M0, then the function

M0→R, p 7→ g0(X,Y )(p) = g0

∣∣∣
p
(Xp,Yp)

is smooth.

• The Riemannian structure g0 : TM0 × TM0→R, then defines the Riemannian
distance function

d0 : M0 ×M0→ [0,∞),

as follows:

Le
ng

th

Let Ωp,q is the set of piecewise smooth curves inM0 from p to q. Given
a curve γ ∈Ωp,q with γ : [0,1]→M0, there is a finite partition

0 = t0 < t1 < t2 < . . . < tk = 1

such that γ
∣∣∣
[ti ,ti+1]

is smooth for each i. Then the Riemannian arc length
of γ is give by

L0(γ)B
k−1∑
i=0

∫ ti+1

ti

√
g0(γ̇(t), γ̇(t))dt

D
is
ta
nc

e The Riemannian distance will be

d0(p,q) = inf
{
L0(γ) : γ ∈Ωp,q

}
.

• The Riemannian distance satisfies the following properties:

Lorentzian and semi-Riemannian Geometry



1 Scalar Product Space 2

1. d0(p,q) = d0(q,p), p,q ∈M0.

2. d0(p,q) = 0 if and only if p = q.

3. d0(p,q) ≤ d0(p,r) + d0(r,q), p,q,r ∈M0.

4. d0 : M0 ×M0→ [0,∞) is continuous, and the metric balls{
B(p,ϵ) : p ∈M0,ϵ > 0

}
forms a basis for the given manifold topology, where B(p,ϵ) = {q ∈ M0 :
d0(p,q) < ϵ}.

• Since (M0,d0) is a metric space, now we can talk about its completeness and for
that we have Hopf-Rinow theorem.

Theorem 1.2. For any Riemannian manifold (M0,g0), the following are equiva-
lent:

1. (M0,d0) is a complete metric space.

2. For any v ∈ TM0, the geodesic γ(t) in M0 with γ̇(0) = v is defined for all
t ∈R.

3. For some p ∈M0, the exponential map expp is defined on the entire tangent
space TpM0 to M0 at p.

4. Every subset N ⊆M0 that is d0 bounded, that is, sup{d0(p,q) : p,q ∈N } has
compact closure. Furthermore, if one of (1)-(4) holds, then

5. given any p,q ∈ N , there exists a smooth geodesic segment γ joining p to q
such that L0(γ) = d0(p,q).

�
Unfortunately, none of these statements is valid for arbitrary
Lorentzian manifolds.

• We know that every smooth manifold is a Riemannian manifold. Does there
exists a complete Riemannian metric? This was first answered by Nomizu and
Ozeki in [NO61].

Re
ca

ll

Two Riemannian metrics f and g are conformal if there exists a smooth
function f : M0→R such that

f = e2ug.

Theorem 1.3. [NO61] For any Riemannian metric g0 on M0, there exists a

Lorentzian and semi-Riemannian Geometry



1 Scalar Product Space 3

complete Riemannian metric which is conformal to g.

Theorem 1.4. [NO61] For any Riemannian metric g0 on M0, there exists a
bounded Riemannian metric which is conformal to g.

1.2 Bilinear Form

We will start with recalling the symmetric bilinear forms.

• A bilinear form on a vector space V is a bilinear map

B : V ×V →R.

It is symmetric if B(v,w) = B(w,v) for v,w ∈ V .

Symmetric Bilinear Forms

Positive Definite
B(v,v) > 0, ∀ v , 0

Negative Definite
B(v,v) < 0, ∀ v , 0

Positive Semidefinite
B(v,v) ≥ 0, ∀ v

Negative Semidefinite
B(v,v) ≤ 0, ∀ v

Nondegenerate
B(v,w) = 0, ∀ v

=⇒ v = 0

• We will call B to be (semi)definite if it is either positive or negative (semi)definite.

Note. For a given symmetric bilinear form B on V , we note that

B is definite ⇐⇒ B is semidefinite and nondegenerate.

Proof. If B is definite, then it is clear that B is semidefinite and nondegenerate. For
the other part, let B be semidefinite and nondegenerate. To prove that B is definite,
let us assume that B(v,v) = 0. Then for any w ∈ V ,

B(v+w,v+w) = 2B(v,w) +B(w,w) ≥ 0
B(v −w,v −w) = −2B(v,w) +B(w,w) ≥ 0.

Using these two equations, for any w ∈ V , we get

2|B(v,w)| ≤ B(w,w) =⇒ 2|B(v,w)| ≤ λB(w,w) ∀ λ > 0
=⇒ B(v,w) = 0 =⇒ v = 0.

Lorentzian and semi-Riemannian Geometry
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For a vector subspace W ⩽ V , and symmetric bilinear form on B on V , it is clear
that the restriction B

∣∣∣
W×W B B

∣∣∣
W

of B to W is again a symmetric bilinear form. It
also preserves the semi(definite) property on the restriction.

Definition 1.5. Let B be a symmetric bilinear form on a vector space V . The index of
B is defined as

ind(B)Bmax
{
dimW : W ⩽ V and B

∣∣∣
W×W is neg. def.

}
Remark. Let dimV = n. It is clear that

• 0 ≤ ind(B) ≤ n

• ind(B) = 0 ⇐⇒ B is positive semidefinite.

• ind(B) = n ⇐⇒ B is negative definite.

Given a symmetric bilinear form B, we define the quadratic form associated with B as
a function

Q : V →R, Q(v) = B(v,v) ∀ v ∈ V .

By the polarization identity, we can recover the bilinear form from Q as

B(v,w) =
1
2
[Q(v+w)−Q(v)−Q(w)] .

Therefore, all the information of B are enclosed in Q.

Let B = {e1,e2, . . . ,en} be a basis of V , then the matrix of B with respect to B is given
by

[B]ij B
[
B(ei ,ej)

]
1≤i,j≤n

.

It is clearly symmetric and completely determines B. We can characterize the
nondegeneracy of B by its matrix with respect to any basis.

Lemma 1.6. A symmetric bilinear form is nondegenerate if and only if its matrix with
respect to one (and hence every) basis is invertible.

Proof. Let B be a symmetric bilinear form on a vector space V and v ∈ V . Let
B(v,w) = 0 for w ∈ V . Let B = {e1,e2, . . . ,en} be a basis of V . Then, for each 1 ≤ j ≤ n,

B(v,ej) = 0 =⇒ B

∑
i

viei ,ej

= 0

Lorentzian and semi-Riemannian Geometry
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=⇒
∑
i

vi ·B(ei ,ej) = 0.

Thus,

B is nondegenerate ⇐⇒ v = 0 ⇐⇒ (v1,v2, . . . ,vn) = 0
⇐⇒ kerB= {0}
⇐⇒ B is invertible.

Lecture–2

1.3 Scalar product space

Definition 1.7. A scalar product g on a vector space V is a nondegenerate symmetric
bilinear form. We will call (V ,g) a scalar product space. An inner product is a
positive definite scalar product.

Example 1.8. (i) The standard dot product on Rn,

v ·w =
n∑
i=1

viwi ,

is an example of an inner product.

(ii) Changing one sign in the definition of the dot product on R2 gives the
simplest example of an indefinite scalar product. We call this space two-
dimensional Minkowski space, R2

1. The scalar product on R2
1 is defined as

g : R2 ×R2→R, g(v,w) = −v1w1 + v2w2. (1.1)

It is clear that g is symmetric and bilinear. To prove that it is nondegenerate,
let for any w ∈R2, g(v,w) = 0. Set w = (1,0) and then (0,1), we get

g(v, (1,0)) = 0 and g(v, (0,1)) = 0 =⇒ v1 = v2 = 0 =⇒ v = 0.

To see that g is indefinite note that

g((1,0), (1,0)) = −1, g((0,1), (0,1)) = 1 > 0, g((1,1), (1,1)) = 0.

Lorentzian and semi-Riemannian Geometry



1 Scalar Product Space 6

The corresponding quadratic form is Q(v) = −v2
1 + v2

2 .

Let (V ,g) be a (finite dimensional) vector space with g being a scalar product.
A vector v , 0 is called a null vector if Q(v) = 0. Null vectors exist iff g is indefinite.
In R2

1, for any α > 0, the set Q = α and Q = −α are hyperbolas asymptotic to the the
null lines(Q = 0) (Figure 1).

Q = α
Q = −α
Q = 0

Figure 1: Q in 2-dimensional Minkowski space

Two vector v,w ∈ V are orthogonal, written v⊥w, if g(v,w) = 0. Analogously,
we call subspaces U and W of V are orthogonal, if g(u,w) = 0 for any u ∈ U and
w ∈W .

�

When the scalar product is indefinite, two vectors that are orthogonal
need not to be at right angles to one another as the following example
illustrates.

Example 1.9. Let w = (1,1) = w′, u = (1,0),u′ = (0,1) and v =
(1,v),v′ = (v,1),v > 0. Then w⊥w′,u⊥ u′ and v⊥ v′ (see Figure 2).

In the above example the null vectors w,w′ are orthogonal which illustrates the
fact that a nonzero null vector is orthogonal to each itself. If W is a subspace of V ,
let

W⊥B {v ∈ V : v ⊥ w, ∀ w ∈W } . (1.2)

It is clear that W⊥ is a subspace of V .

Lorentzian and semi-Riemannian Geometry
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u

u′

v

v′ w = w′

Figure 2: Orthogonal vectors in R2
1

�
We cannot call W⊥ the orthogonal complement of W since, in general,
W +W⊥ , V . For example, if W = span {w} in Example 1.9, then we have
W =W⊥.

However, the following properties hold for W⊥.

Exercise 1.10. Let W be a subspace of a scalar product space V , then

(i) dimW + dimW⊥ = dimV

(ii) (W⊥)⊥ =W .

Note that a symmetric bilinear form g on V is nondegenerate if and only if
V ⊥ = {0}. A subspace W of (V ,g) is called nondegenerate if g

∣∣∣
W

is nondegenerate.
When V is an inner product space, then any subspace W is again an inner product
space and hence nondegenerate. However, when g is definite, then there always
exists a degenerate subspace; for example, W = span {w}, where w is a null vector.
Hence a subspace of a scalar product space need not be a scalar product space. We
now give a simple characterization of nondegeneracy for subspaces.

Exercise 1.11 (Characterization of nondegenerate subspaces). A subspace W of a
scalar product space V is nondegenerate if and only if V =W ⊕W⊥.

Lorentzian and semi-Riemannian Geometry
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Exercise 1.12. A subspace W of a scalar product space V is nondegenerate if and
only if W⊥ is nondegenerate.

We will now talk about norm of a vector. Since Q can take negative values, we
define the norm of any vector as

∥v∥= |g(v,v)|
1
2 . (1.3)

A vector v is called a unit vector if its norm is 1, that is, g(v,v) = ±1. In R2
1, the unit

circle will be
S1 =

{
(v1,v2) ∈R2 : −v2

1 + v1
2 = ±1

}
A family of pairwise orthogonal unit vectors is called orthonormal. Observe that the

g(v,v) = 1

g(v,v) = −1

Figure 3: Unit circle in R2
1

set of n= dimV orthonormal vectors in V is necessarily a basis for V . The following
results guarantee that any scalar product space has an orthonormal basis (ONB).

Lemma 1.13. A scalar product space V , 0 has an orthonormal basis.

Proof. We will show this by the method of induction on dimension of V , say n. If n=
1, choose 0 , v ∈ V such that g(v,v) , 0 (this is possible because g is nondegenerate.
To see this, if g(v,v) = 0 for every v ∈ V , then by using polarization identity for
any w ∈ V , g(v,w) = 0, which implies v = 0, a contradiction). Let e1 = v/∥v∥.
Then {e1} is an ONB for V . Suppose that for k-dimensional space we have an ONB,

Lorentzian and semi-Riemannian Geometry
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and we want to show that for k + 1 dimensional space such an ONB exists. Let
{e1,e2, . . . ,ek} be an orthonormal basis for a k-dimensional subspace, say W . This
implies (by Lemma 1.6), W is nondegenerate and so is W⊥ (by Exercise 1.12). Let
ek+1 be a unit vector in W⊥ (same argument as for dim = 1). Then an ONB of V is
{e1, . . . ,ek+1}.

• An ONB for R2
1 can be given by{

(1,0), (0,1)
}
,

{
(1,
√

2), (
√

2,1)
}
.

• The matrix of g relative to any orthonormal basis {e1, . . . ,en} for V is diagonal,
more precisely,

g(ei ,ej) = δijϵj , where ϵj = ±1.

• We shall order the vectors in an ONB in such a way that in the so called signature
(ϵ1, . . . ,ϵn) the negative signs come first.

Exercise 1.14. The following are easy properties for ONB.

(i) Let {e1, . . . ,en} be an ONB for V . Then any v ∈ V has a unique representation

v =
n∑
i=1

ϵig(v,ei)ei .

(ii) For any ONB {e1, . . . ,en} for V the number of negative signs in the signature
(ϵ1, . . . ,ϵn) is the index of V .

(iii) LetW be a nondegenerate subspace of V . Then ind(V ) = ind(W )+ind(W⊥).

Let (V ,g) and (W ,h) be two scalar product spaces. A linear map T : V →W
is said to preserve scalar products if h(T v1,T v2) = g(v1,v2). A linear isomorphism
T : V →W that preserves scalar products is called a linear isometry.

Exercise 1.15. Scalar product space V and W have the same dimension and
index if and only if there exists a linear isometry from V to W .

Lorentzian and semi-Riemannian Geometry
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1.4 Causality

A scalar product with index 0 is called a Riemannian scalar product and a vector
space with a Riemannian scalar product is called Riemannian scalar product space. A
scalar product with index 1 is called a Lorentz scalar product and a vector space with
a Lorentz scalar product is called Lorentz scalar product space.

If V is an n-dimensional Riemannian scalar product space, then there is a
linear isometry from V to Rn. If V is an n-dimensional Lorentz scalar product space,
then there is a linear isometry from V to Rn

1.

Definition 1.16. Let (V ,g) be a Lorentz scalar product space. Then a vector v ∈ V is
said to be

(a) timelike if g(v,v) < 0,

(b) spacelike if g(v,v) > 0 or v = 0,

(c) lightlike or null if g(v,v) = 0 and v , 0.

(d) causal if v is timelike or lightlike.

The classification of a vector v ∈ V according to the above is called the causal character
of the vector v.

This terminology matters because it connects to the idea of causality in physics,
which is about how events can affect one another. In special relativity, nothing can
travel faster than light, setting a speed limit for information. Picture γ as a path
in Minkowski spacetime—like the trail of something moving, such as a particle, a
spacecraft, or a beam of light. The speed of this object compared to light depends
on the ”causal character” of γ̇ , the tangent vector showing its direction and speed
in this space. If γ̇ is timelike, the object moves slower than light; if γ̇ is lightlike,
it moves exactly at light speed; and if γ̇ is spacelike, it would imply moving faster
than light, which isn’t possible for physical objects but can describe mathematical
paths.

In Minkowski spacetime, a vector v = (v0, v⃗) ∈ Rn+1, where v⃗ ∈ Rn, is mea-
sured using the expression g(v,v) = −(v0)

2 + |v⃗|2. Here, |v⃗| is the usual length of the
spatial part v⃗, like the distance in regular space. We classify v based on this value:
it’s timelike if |v0| > |v⃗|, meaning the time part dominates; lightlike if |v0|= |v⃗| , 0, so
they balance perfectly; and spacelike if |v0| < |v⃗| or v = 0, where the spatial part is
larger or the vector is zero. The timelike vectors split into two groups: those with
v0 > 0 (pointing toward the future) and those with v0 < 0 (pointing toward the past).
Picking one of these groups decides what we call the “future” and “past”—this
choice is known as the time orientation. Below, we’ll explain these ideas further and
define the time orientation more clearly.

Lorentzian and semi-Riemannian Geometry



1 Scalar Product Space 11

Definition 1.17. Let (V ,g) be a scalar product space andW ⊆ V be a subspace. Then
W is said to be spacelike if g

∣∣∣
W

is positive definite, that is, if g
∣∣∣
W

is nondegenerate of
index 0. Moreover, W is said to be lightlike if g

∣∣∣
W

is degenerate. Finally, W is said to
be timelike if g

∣∣∣
W

is nondegenerate of index 1.

By using Exercise 1.12, we can conclude that

Exercise 1.18. Let (V ,g) be a Lorentzian scalar product space and W ⊆ V be a
subspace. Then W is timelike if and only if W⊥ is spacelike.

lightlike

timelike

sp
ac

el
ik

e sp
acelike

timelike

Figure 4: Causal Subspaces

Exercise 1.19. Some More problems from [O’N83].

1. Let B be a symmetric bilinear form on a vector space V . The nullspace of B
is N = {v : B(v,w) = 0, ∀ w ∈ V }. The nullcone of B is the set Λ of all null
vectors in V . Let A=Λ∪ {0}. Prove

(a) N is a subspace of V , but A is not unless A= {0} or A= V .

(b) B is nondegenerate if and only ifN = 0; B is definite if and only if A= {0}.
(c) B is semidefinite if and only if N = A.

2. Let g be a scalar product of index k on an n-dimensional vector space V .
Prove that there exists a subspaceW of dimension min{k,n−k}, and no larger,

Lorentzian and semi-Riemannian Geometry
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on which g = 0.

3. Let V have indefinite scalar product g, and let B be a symmetric bilinear
form on V with corresponding quadratic form Q. Show that the following
conditions are equivalent.

(a) B= cg for some c ∈R,

(b) Q = 0 on null vectors,

(c) |Q| is bounded on timelike unit vectors,

(d) |Q| is bounded on spacelike unit vectors.

Lecture–3

1.5 Timelike cones

Let (V ,g) be a Lorentzian scalar product space of dimension n ≥ 2 with a
Lorentzian scalar product g.

Proposition 1.20. The subset of the timelike vectors (resp. causal; lightlike if n > 2)
has two connected parts.

Proof. Let {e1,e2, . . . ,en} be an orthonormal basis of V , and v ∈ V such that v =∑n
i=1viei . Then it is clear that

v is lightlike ⇐⇒ |v1|=

√√
n∑
i=2

v2
i , v1 , 0

v is timelike ⇐⇒ |v1| >

√√
n∑
i=2

v2
i

v is causal ⇐⇒ |v1| ≥

√√
n∑
i=2

v2
i , v1 , 0.

Therefore, in each case there exist two connected parts, the corresponding to v1 < 0
and the corresponding to v1 > 0.

Definition 1.21. A time orientation of Lorentzian vector space is a choice of one of
the two timelike cones (or, equivalently, of one of the causal or lightlike cones). The

Lorentzian and semi-Riemannian Geometry
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chosen cone will be called future, and the other one, past.

From now on, the vectors in the future (resp. past) cone wil be called future directed
or future-pointing (resp. pat-directed or past-pointing) vectors.

Proposition 1.22. Two timelike vectors v and w lie in the same timelike cone if and
only if g(v,w) < 0.

Proof. Without loss of generality, let us assume that ∥v∥= 1, and v can be completed
to an orthonormal basis {v,e2,e3, . . . ,en}. Observe that

w = −g(v,w)v+
n∑
i=2

g (ei ,w)ei .

Then using the proof of Proposition 1.20, v and w are in the same cone if and only if
−g(v,w) > 0.

Proposition 1.23. If v,w are timelike vectors in the same cone, then so is av+ bw for
any a,b > 0. In particular, each timelike cone is convex.

Proof. Using Proposition 1.22, we have g(v,w) < 0. Consider,

g(av+ bw,av+ bw) = a2g(v,v) + 2abg(v,w) + b2g(w,w) < 0 (1.4)
g(v,av+ bw) = ag(v,v) + bg(v,w) < 0. (1.5)

The Equation (1.4) implies the vector av+ bw is timelike and Equation (1.5) implies
it belongs to the same cone.

Reverse Inequalities

Theorem 1.24 (Reverse Cauchy-Schwarz Inequality). If v,w ∈ V are timelike
vectors, then

(i) |g(v,w)| ≥ ∥v∥g ·∥w∥g . Moreover, the equality holds if and only if v,w are colinear.

(ii) If v and w lie in the same cone, then there exists a unique φ ≥ 0, called the
hyperbolic angle between v and w such that

g(v,w) = −∥v∥g · ∥w∥g cosh(φ).

Lorentzian and semi-Riemannian Geometry
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Proof. (i) Note that the inequality remains true if we take av for a > 0. So, without
loss of generality, we assume that g(v,v) = −1. Recall from Exercise 1.11, a
subspace W of V is nondegenerate if and only if V =W ⊕W⊥, so we can write
V = Rv⊕ {v}⊥. Let a ∈ R and w0 be such that w = av + w0 with w0 ⊥ v (that
means w0 is a spacelike vector, see Exercise 1.12). Then

g(v,w) = g (v,av+w0) = ag(v,v) + g(v,w0) = −a.

Since g(w,w) < 0 and g(w0,w0) ≥ 0, consider,

g(w,w) = a2g(v,v) + g (w0,w0) = −[g(v,w)]2 + g(w0,w0)

=⇒ − [g(v,w)]2 = −|g(w,w)| − g(w0,w0)

=⇒ [g(v,w)]2 = |g(w,w)|+ g(w0,w0) ≥ |g(w,w)|
=⇒ |g(v,w)|2 ≥ ∥w∥g = ∥w∥g · ∥v∥g ,

since ∥v∥g = 1.

It is clear that the equality holds if and only if g(w0,w0) = 0, that is, w = av,
that is, the vectors v and w are colinear.

(ii) If v,w lie in the same cone, then g(v,w) < 0 (Proposition 1.22). So the reversed
Cauchy-Schwarz inequality gives,

−g(v,w)

∥v∥g · ∥w∥g
≥ 1.

Since cosh is a bijection from [0,∞) to [1,∞), so we get unique φ ≥ 0 such that

g(v,w) = −∥v∥g · ∥w∥g cosh(φ).

Theorem 1.25 (Reversed Triangle Inequality). Let v,w ∈ V are timelike vectors in
the same cone, then

∥v+w∥g ≥ ∥v∥g + ∥w∥g
and the equality holds if and only if v,w are colinear.

Proof. Using Theorem 1.24, we observe that

∥v+w∥2g = −g(v+w,v+w) (Proposition 1.23)

= −g(v,v)− 2g(v,w)− g(w,w)

= ∥v∥2g + ∥w∥2g + 2|g(v,w)| (Proposition 1.22)

≥ ∥v∥2g + ∥w∥2g + ∥v∥g · ∥w∥g (Theorem 1.24)

= (∥vg + ∥w∥g∥)2.

Moreover, the equality holds if and only if |g(v,w)| = ∥v∥g · ∥w∥g , which holds, by
Theorem 1.24, if and only if v and w are colinear.
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We now discuss some analogous properties of lightlike and causal cones.

Proposition 1.26. If u,w ∈ V are lightlike vectors, then

{u,w} are linearly dependent ⇐⇒ g(u,w) = 0.

Proof. Since for any lightlike vector v, g(v,v) = 0, so it is clear that if the vectors
are linearly dependent then g(u,w) = 0. For the other side, let us assume that
g(u,v) = 0. Take a unit timelike vector v and decompose V as V = Rv⊕ {v}⊥. Write

u = av+u0 and w = bv+w0,

for unique a,b ∈R and w0,u0 ∈ {v}⊥. Then,

g(u,w) = 0 =⇒ g(av+u0,bv+w0) = 0
=⇒ abg(v,v) + g(u0,u0) = 0
=⇒ g(u0,w0) = ab.

Similarly,
g(u0,u0) = a2 and g(w0,w0) = b2.

Since, g(aw0 − bu0,v) = 0, so aw0 − bu0 ∈ {v}⊥ and hence spacelike. Now,

g(aw0 − bu0,aw0 − bu0) = a2g(w0,w0)− 2abg(w0u0) + b2g(u0,u0)

= a2b2 − 2a2b2b2a2 = 0.

This implies, aw0 − bu0 = 0. Note that a , 0 and b , 0 since u and v are lightlike.
Thus,

aw− bu = abv+ aw0 − abv− bu0 = aw0 − bu0 = 0,

and hence, {u,w} are linearly independent.

Exercise 1.27. Show the following.

1. If u,w ∈ V are two linearly independent vectors, then

u,w are in the same causal cone ⇐⇒ g(u,w) < 0.

2. The causal cones are convex.

Lorentzian and semi-Riemannian Geometry
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Proposition 1.28. If W < V , with dimW ≥ 2, the following conditions are equiva-
lent.

(i) W is timelike,

(ii) W contains two linearly independent lightlike vectors,

(iii) W contains one timelike vector.

Lorentzian and semi-Riemannian Geometry
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2 Semi-Riemannian Metrics

Lecture–4

Definition 2.1. A semi-Riemannian metric tensor (or metric, for short) on a smooth
manifoldM is a symmetric nondegenerate (0,2)-tensor field g onM of constant index.

In other words, g smoothly assigns to each point p ∈M a symmetric nondegener-
ate bilinear form g(p) ≡ gp : TpM ×TpM→R such that the index rp of gp is the same
for all p. We call this common value rp the index r of the metric g. We clearly have
0 ≤ r ≤ n = dimM. In case r = 0, all gp are inner products on TpM and we call g a
Riemannian metric. In case r = 1, and n ≥ 2, we call g Lorentzian metric.

Remark. The requirement that the index r is chosen constant must be taken into
account only when M is not connected. Indeed, one can show that if g is degenerate
at every point, then the index is locally constant (see Lemma 2.2 below).

Lemma 2.2. Let M be a semi-Riemannian manifold with g be a symmetric (0,2)-
tensor field on M. Then the set of all points where g is nondegenerate with index r,
0 ≤ r ≤ n is open.

Proof. Let
U = {p ∈M : gp is nondegenerate of index r}.

If U = ∅, then there is nothing to prove. Let us assume that U , ∅. Let p ∈ U and
gp is nondegenerate of index r. Choose an orthonormal basis for (TpM,gp), say
Bp = {e1, . . . ,er ,er+1, . . . ,en} such that

gp(ei ,ei) =

−1, if 1 ≤ i ≤ r;
1, if r + 1 ≤ i ≤ n.

Extend Bp to a local frame {X1, . . . ,Xr ,Xr+1, . . . ,Xn} on a neighborhood U of p (that
is, Xi(p) = ei) and let gij be functions on U defined by gij = g(Xi ,Xj) for 1 ≤ i, j ≤ n.
Since gp is nondegenerate at p, so det(gij(p)) , 0 at p and hence in a neighborhood
of p. By shrinking U to this neighborhood, if necessary, we may assume that gq
is nondegenerate of some index rq at each point q ∈ U . Since gij are continuous
functions on U , we let ϵ+ = 1

n−r+2 . So, there exists a neighborhood U+ of p such that

|gij(q)− gij(p)| < ϵ+ ∀ r + 1 ≤ i ≤ n,q ∈U+

and
|gij(q)| < ϵ+ i , j, r + 1 ≤ i ≤ n, q ∈U+.
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Let W+q
= span

{
Xr+1(q), . . . ,Xn(q)

}
. We claim that for any x(, 0) ∈W+q

g(x,x) > 0.
Let us write x =

∑n
i=r+1λiXi(q). Then

g(x,x) = g

 n∑
i=r+1

λiXi(q),
n∑

i=r+1

λiXi(q)


=

n∑
i,j=r+1

λiλjg(Xi(q),Xj(q))

=
n∑

i=r+1

λ2
i gii(q) + 2

∑
r+1≤i<j≤n

λiλjgij(q)

>
n∑

i=r+1

λ2
i (1− ϵ+)− 2

∑
r+1≤i<j≤n

|λi ||λj |ϵ+

=
n∑

i=r+1

λ2
i − ϵ+

n∑
i=r+1

λ2
i − 2ϵ+

∑
i,j

|λi ||λj |

≥
∑
i

λ2
i − ϵ+

∑
i

λ2
i − ϵ+

∑
i,j

(λ2
i +λ2

j )

=
n∑

i=r+1

λ2
i − ϵ+

(
2λ2

r+1 + 3λ2
r+2 + · · ·+ (n− r + 1)λ2

n

)
> 0.

Similarly, one can show that there exists a neighborhood U− of p such that g(x,x) < 0
for x ∈W−q = span

{
X1(q), . . . ,Xr(q)

}
. Let U ′ = U+ ∩U−. Then on U ′, gq is positive

definite on W+q
and negative definite on W−q . Thus, n− rq ≥ n− r and rq ≥ r. This

implies rq = r, for q ∈U ′.

Definition 2.3. A semi-Riemannian manifold is a pair (M,g), where g is a metric
tensor on M. In case g is Riemannian or Lorentzian we call (M,g) a Riemannian
manifold or Lorentzian manifold, respectively.

� If (U ,φ) is a chart of M with coordinates φ =
(
x1,x2, . . . ,xn

)
and natural basis

vector fields ∂i ≡ ∂
∂xi

, we write,

gij =
〈
∂i ,∂j

〉
, 1 ≤ i, j ≤ n (2.1)

for the local components of g on V .

� Since g is nondegenerate, at each point of U , the matrix
(
gij(p)

)
is invertible

(by Lemma 1.6) and its inverse matrix is denoted by
(
g ij(p)

)
. By the inversion

formula, it is clear that (g ij(p)) is smooth on U and by symmetry of g we have
g ij = gji for all i and j.
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� Denoting the dual basis covector fields of ∂i by dxi we have

g
∣∣∣
U
=

∑
i,j

gijdxi ⊗dxj .

Example 2.4. (i) Let M = Rn. For each p ∈ Rn, there is a canonical linear
isomorphism from Rn to TpM that, in terms of natural coordinates, sends v
to vp =

∑
i vi∂i . This induces a metric tensor on M which we denote by〈

vp,wp

〉
= v ·w =

∑
i

viwi .

Henceforth we will always consider Rn equipped with this Riemannian
metric.

(ii) For any integer 0 ≤ r ≤ n,

〈
vp,wp

〉
= −

r∑
i=1

viwi +
n∑

j=r+1

vjwj

defines a metric on Rn of index r. We will denote Rn with this metric tensor
by Rn

r .

(a) If r = 0, then it is the Euclidean space.

(b) For n ≥ 2, Rn
1 is called n-dimensional Minkowski space.

(c) If n= 4, it is the simplest example of a spacetime in the sense of Einstein’s
general relativity.

Setting ϵi =

−1, if 1 ≤ i ≤ r;
1, if r + 1 ≤ i ≤ n.

, the metric of Rn
r takes the form

g =
∑
i

ϵidxi ⊗dxi .

All the properties that we have studied on scalar products can be applied to
every tangent space (TpM,gp).

• A Lorentzian manifold (M,g) is said to be time oroiented if M admits a continu-
ous, nowhere vanishing vector field X.

• This vector field is used to separate the nonspacelike vectors at each point into
two classes called future directed and past directed vector fields.
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v , 0

timelike
g(v,v) < 0

spacelike
g(v,v) > 0

nonspacelike
g(v,v) ≤ 0

null
g(v,v) = 0

Figure 5: lorentzianVectors

• A space-time is a Lorentzian manifold (M,g) together with a choice of time
orientation.

time

C

A
B

spacelike vector

lig
ht

lik
e

ve
ct
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elike

vector

Future light cone

Past light cone

O
space

space

Figure 6: Light Cone in 2d Space plus a Time Dimension

Given a way to get new smooth manifolds from old, there is often a correspond-
ing wat to derive a metric tensor on the new manifold from metric tensor on the
old.

Let N be a submanifold of a Riemannian manifold (M,g) with embedding
j : N ↪→M. Then the pull back j∗g of the metric g to the submanifold N is given by

(j∗g)p(v,w) = gj(p)(djp(v),djp(w)) = gp(v,w),

where in the final equality we have identified djp(TpN ) with TpN .Hence j∗gp is just
the restriction of gp to the subspace TpN of TpM. Since g is a Riemannian metric,
this restriction is positive definite ans so j∗g turns N into a Riemannian manifold.

Lorentzian and semi-Riemannian Geometry



2 Semi-Riemannian Metrics 21

However, if M is only semi-Riemannian manifold then the (0,2)-tensor field
j∗g on N need not be a metric. Indeed j∗g is a metric and hence (N , j∗g) a semi-
Riemannian manifold if and only if every TpN is nondegenerate in TpM and the
index of TpN is the same for all p ∈N . Of course, this index can be different from
the index of g. These considerations lead to the following definition.

Definition 2.5. A submanifold N of a semi-Riemannian manifold (M,g) is called a
semi-Riemannian submanifold if j∗g is a metric on N .

We now consider the product manifolds.

Lemma 2.6. Let M and N be semi-Riemannian manifolds with metric gm and gN . If
π and σ are the projections of M ×N onto M and N , respectively, let

g = π∗(gM) + σ ∗(gN ).

Then g is a metric on M ×N making it a semi-Riemannian product manifold.

Exercise 2.7. Proof Lemma 2.6.

Isometries

Definition 2.8. Let (M,gM) and (N ,gN ) be semi-Riemannian manifolds and φ :
M→N be a diffeomorphism. Then we call φ an isometry if φ preserves the metric,
that is, φ∗(gN ) = gM . We call M and N are isometric.

More explicitly, 〈
dφ(v),dφ(w)

〉
= ⟨v,w⟩

for all v,w ∈ TpM,p ∈ M. Since φ is a diffeomorphism, every differential map
dφp : TpM→ Tφ(p)N is a linear isometry.

Remark. (i) It is easy to see that the identity map of semi-Riemannian manifold is
an isometry. A composition of isometries is an isometry. The inverse map of an
isometry is an isometry.

(ii) If V is an n-dimensional scalar product space with ind(V ) = r, then V as a
semi-Riemannian manifold is isometric to Rn

r .
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2.1 Levi-Civita Connection

Let x1,x2, . . . ,xn be natural coordinates of Rn
r . If X and Y =

∑
i yi∂i are vector fields

on Rn
r , the vector field

DXY =
n∑
i=1

X(yi)∂i ,

is called the covariant derivative of Y with respect to X. This definition uses the
distinctive coordinates of Rn

r , it is not obvious how to extend this definition to
an arbitrary semi-Riemannian manifold. We, therefore, begin by putting some
properties motivating from Rn

r . Let X(M) denotes the set of all vector fields on M.

Definition 2.9. A (linear) connection on a C∞ manifold M is a map

∇ : X(M)×X(M)→ X(M), (X,Y ) 7→ ∇XY

such that

∇1) ∇XY is C∞(M)-linear in X. That is, for any X1,X2 ∈ X(M) and f ∈ C∞(M), we
have

∇X1+f X2
Y = ∇X1

Y + f ∇X2
Y .

∇2) ∇XY is R-linear in Y , that is, for α ∈R and Y1,Y2 ∈ X(M),

∇X(Y1 +αY2) = ∇XY1 +α∇XY2.

∇3) ∇XY satisfies the Leibniz rule, that is, for any f ∈ C∞(M),

∇X(f Y ) = X(f )Y + f ∇XY .

We call ∇XY the covariant derivative of Y in the direction of X with respect to the
connection ∇.

Lecture–5

Our next goal is to show that on every semi-Riemannian manifold, there exists a
unique connection, (that will be called Levi-Civita connection) satisfying some extra
properties. Let Ωk(M) denotes the set of all k-forms on M.

Proposition 2.10. Let M be a semi-Riemannian manifold and X ∈ X(M). Let
X♭ ∈Ω1(M) such that

X♭(Y ) = ⟨X,Y ⟩ , Y ∈ X(M). (2.2)
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The function X 7→ X♭ is a C∞(M)-linear isomorphism from X(M) to Ω1(M).

Proof. Let us denote the map by φ : X(M) → Ω1(M). It is easy to see that φ is
C∞(M)-linear. We will now show that φ is an isomorphism.

Injectivity: Let φ(X) = φ(Y ). This implies,

∀ Z ∈ X(M), ⟨X,Z⟩= ⟨Y ,Z⟩ =⇒ ⟨X −Y ,Z⟩= 0.

We claim that if ⟨X,Y ⟩ = 0 for any Y ∈ X(M), then X = 0. Since ⟨X,Y ⟩ = 0, so for
any p ∈M,

〈
Xp,Yp

〉
= 0. Let v ∈ TpM then we have

〈
Xp,v

〉
= 0

gp is nondegenerate
=⇒ Xp = 0.

Since p is arbitrary, X = 0.

Surjectivity: Let ω ∈Ω1(M). Then we need to show that there exists X ∈ X(M)
such that φ(X) = ω. At first we will deal this locally. Let (ϕ = (x1, . . . ,xn),U ) is a
chart of M. So write

ω
∣∣∣
U
=

n∑
i=1

widxi .

Define

XU B
n∑

i,j=1

g ijwi
∂
∂xj
∈ X(U ).

Then, 〈
XU ,

∂
∂xk

〉
=

∑
i,j

g ijwi

〈
∂
∂xj

,
∂
∂xk

〉
=

∑
i,j

wig
ijgjk

=
∑
i

wiδik = ωk = ω
∣∣∣
U

(
∂
∂xk

)
.

Thus, by C∞(M)-linearity, φ (XU ) = ω
∣∣∣
U

.
Also, note that this is well-behaved with the change of charts. That is, for

any charts (φ = (x1, . . . ,xn),U ) and ψ = (y1, . . . ,yn),V if U ∩V , ∅, then XU
∣∣∣
U∩V =

XV
∣∣∣
U∩V . Write,

ω
∣∣∣
U
=

∑
i

widxi and ω
∣∣∣
V
=

∑
j

w̄jdyj
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g
∣∣∣
U
=

∑
i,j

gijdxi ⊗dxj and g
∣∣∣
V
=

∑
i,j

ḡijdyi ⊗dyj .

At first we show that
∑
i,j g

ijwi
∂
∂xj

=
∑
i,j ḡ

ijw̄i
∂
∂yj

. Recall that dxj =
∑
i
∂xj
∂yi

dyi . So,

ω
∣∣∣
U∩V =

∑
j

wjdxj =
∑
i,j

wj
∂xj
∂yi

dyi =
∑
i

w̄idyi =⇒ w̄i =
∑
m

wm
∂xm
∂yi

.

We also recall that ∂
∂yi

=
∑
k
∂xk
∂yi

∂
∂xk

. This,

ḡij = g

(
∂
∂yi

,
∂
∂yj

)
= g

∑
k

∂xk
∂yi

∂
∂xk

,
∑
l

∂xl
∂yj

∂
∂xl


=

∑
k,l

∂xk
∂yi

∂xl
∂yj

g

(
∂
∂xk

,
∂
∂xl

)
=

∑
k,l

∂xk
∂yi

∂xl
∂yj

gkl .

So, by setting A= (aki) =
(
∂xk
∂yi

)
, we obtain

(
ḡij

)
= At

(
gij

)
A =⇒

(
ḡ ij

)
= A−1

(
g ij

)(
A−1

)t
=⇒ ḡ ij =

∑
k,l

∂yi
∂xk

gkl
∂yj
∂xl

.

Finally, we obtain ∑
i,j

ḡ ijw̄i
∂
∂yj

=
∑
k,l,m,n

∂yi
∂xk

gkl
∂yj
∂xl

wm
∂xm
∂yi

∂xn
∂yj

∂
∂xn

=
∑
m,n

gmnwm
∂
∂xn

.

Therefore, XU
∣∣∣
U∩V = XV

∣∣∣
U∩V .

Finally, we will use partition of unity to patch them up. Choose a cover
U = {Ui : i ∈ I} of M by charts neighborhoods and a subordinate partition of unity
(χi)i such that supp(χi) ⊂Ui . For any Y ∈ X(M), we then have

⟨X,Y ⟩=
〈
X,

∑
i

χiY

〉
=

∑
i

⟨X,χiY ⟩=
∑
i

〈
X
∣∣∣
Ui

,χiY
〉

=
∑
i

ω
∣∣∣
Ui
(χiY ) =

∑
i

ω(χiY ) = ω

∑
i

χiY

= ω(Y ).

Thus, in semi-Riemannian geometry, we can identify a vector field into a one-form
and vice-versa. We now will prove the existence of a special connection.
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Theorem 2.11 (Fundamental Theorem of semi-Riemannian Geometry). Let (M,g)
be a semi-Riemannian manifold. Then there exists a unique connection ∇ on M such
that ∇ satisfies (∇1)− (∇3) and for any X,Y ,Z ∈ X(M),

∇4) [X,Y ] = ∇XY −∇YX (Torsion Free)

∇5) Z
〈
X,y

〉
= ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩ (Metric Compatibility).

The connection ∇ is called Levi-Civita connection of (M,g). It is uniquely deter-
mined by the Koszul formula

2⟨∇XY ,Z⟩= X ⟨Y ,Z⟩+ Y ⟨Z,X⟩ −Z ⟨X,Y ⟩
−
〈
X, [Y ,Z]

〉
+

〈
Y , [Z,X]

〉
+

〈
Z, [X,Y ]

〉
.

(2.3)

Proof. Uniquenss Let

F(X,Y ,Z)B X ⟨Y ,Z⟩+ Y ⟨Z,X⟩ −Z ⟨X,Y ⟩
−
〈
X, [Y ,Z]

〉
+

〈
Y , [Z,X]

〉
+

〈
Z, [X,Y ]

〉
.

Using Koszul formula (2.3), and ∇4 & ∇5, we have

F(X,Y ,Z) = ⟨∇XY ,Z⟩+ ⟨Y ,∇XZ⟩+ ⟨∇YZ,X⟩+ ⟨Z,∇YX⟩
− ⟨∇ZX,Y ⟩ − ⟨X,∇ZY ⟩ − ⟨X,∇YZ⟩+ ⟨X,∇ZY ⟩
+ ⟨Y ,∇ZX⟩ − ⟨Y ,∇XZ⟩+ ⟨Z,∇XY ⟩ − ⟨Z,∇YX⟩

= 2⟨∇XY ,Z⟩ .

Now by the injectivity of φ (in Proposition 2.10), ∇XY is uniquely determined.

Existence Given X,Y ∈ X(M), the mapping ω : Z 7→ F(X,Y ,Z) is C∞(M)-linear.
Thus, ω ∈Ω1(M) and by Equation (2.3), there exists a unique vector field which we
call ∇XY such that

2⟨∇XY ,Z⟩B F(X,Y ,Z), ∀ Z ∈ X(M).

Now it remains to show that ∇XY satisfies (∇1)− (∇5).

Exercise 2.12. Check ∇XY satisfies (∇1)− (∇5).

Lemma 2.13. Let U ⊆M be open and X,Y ,X1,X2,Y1,Y2 ∈ X(M). Then we have

(i) X1

∣∣∣
U
= X2 =

∣∣∣
U2

=⇒
(
∇X1

Y
) ∣∣∣
U
=

(
∇X2

Y
) ∣∣∣
U

.
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(ii) Y1

∣∣∣
U
= Y2 =

∣∣∣
U2

=⇒ (∇XY1)
∣∣∣
U
= (∇XY2)

∣∣∣
U

.

2.2 Christoffel Symbol

Definition 2.14. Let (ϕ = (x1, . . . ,xn),U ) be a chart of a semi-Riemannian manifold
M. The Christoffel symbols with respect to ϕ are the C∞-functions Γ ijk : U → R

defined by

∇∂i∂j C
n∑
i=1

Γ kij∂k, 1 ≤ i, j ≤ n.

Note. Since
∇∂i∂j −∇∂j∂i =

[
∂i ,∂j

]
= 0 =⇒ Γ kij = Γ kji .

Proposition 2.15. Let M be a semi-Riemannian manifold and (ϕ = (x1, . . . ,xn),U )
be a chart of M. Let Z =

∑n
i=1 zi∂i ∈ X(U ). Then

(i) ∇∂i
∑n
j=1 zj∂j =

∑n
k=1

(
∂zk
∂xi

+
∑n
j=1 Γ

k
ijzj

)
∂k,

(ii) Γ kij =
1
2
∑n
m=1 g

km
(
∂gjm
∂xi

+
∂gim
∂xj
− ∂gij∂xm

)
.

Proof. (i) This is immediate from Leibniz rule (∇3).

(ii) Apply the Koszul formula (Equation (2.3)) by taking X = ∂i ,Y = ∂j and Z = ∂m.
Then brackets are zero and hence,

2
〈
∇∂i∂j ,∂m

〉
=
∂gjm
∂xi

+
∂gim
∂xj
−
∂gij
∂xm

.

By the definition of Christoffel symbols,

2
〈
∇∂i∂j ,∂m

〉
= 2

〈 n∑
a=1

Γ aij∂a,∂m

〉
=⇒ 2

〈
∇∂i∂j ,∂m

〉
= 2

n∑
a=1

Γ aijgam.

Multiplying by
∑
m g

mk leads to the required result, that is,

Γ kij =
1
2

n∑
m=1

gkm
(
∂gjm
∂xi

+
∂gim
∂xj
−
∂gij
∂xm

)
.
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Lemma 2.16. For X,Y ∈ X(Rn
r ) with Y =

∑
i yi∂i , let

∇XY =
∑
i

X(yi)∂i .

Then ∇ is the Levi-Civita connection on Rn
r and in natural coordinates on Rn

r , we
have

(i) gij = δijϵj , where ϵj =

−1, if 1 ≤ j ≤ r;
1, if r + 1 ≤ j ≤ n,

(ii) Γ kij = 0

for all 1 ≤ i, j,k ≤ n.

Definition 2.17. A vector field X on (M,g) is said to be parallel if ∇XY = 0 for all
Y ∈ X(M).

Example 2.18. The coordinate vector fields in Rn
r are parallel. For any Y =∑

i yi∂i
∇Y∂j =

∑
i

yi∇∂i∂j = 0.

Exercise 2.19. In Rn
r , a vector field is parallel if and only if it is constant, that is,

∇YX = 0 ∀ Y ⇐⇒ X = constant .

Example 2.20 (Cylindrical Coordinates in R3). Let (x,y,z) = (r cosϕ,r sinϕ,z)
be the usual cylindrical coordinates in R3. Actually, the above one is a chart on
R3\{x ≥ 0,y = 0}with an inverse defined by (r,ϕ,z) 7→ (r cosϕ,r sinϕ,z). Hence,
we have

∂r = cosϕ∂x+ sinϕ∂y ,

∂ϕ = rU , where U = −sinϕ∂x+ cosϕ∂y ,

∂z = ∂z.
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rϕ

x y

z

∂r

∂z

∂ϕ

Figure 7: Cylindrical Coordinates

Setting y1 = r,y2 = ϕ,y3 = z, we obtain

g11 = ⟨∂r ,∂r⟩= 1,

g22 =
〈
∂ϕ,∂ϕ

〉
= r2

g33 = ⟨∂z,∂z⟩= 1,
gij = 0, for all i , j.

So, we have

(gij) =

1 0 0
0 r2 0
0 0 1

 and (g ij) =


1 0 0
0 1

r2 0
0 0 1


and hence,

g =
∑
i,j

gijdyi ⊗ dyj = dr ⊗ dr + r2dϕ ⊗ dϕ+ dz⊗ dz.

By looking at the matrix (gij), we have {∂r ,∂ϕ,∂z} is orthonormal and hence
(r,ϕ,z) is an orthogonal coordinate system. For the Christoffel symbols we find

Γ 1
22 = −r, Γ 2

12 = Γ 2
21 =

1
r

,

and other Γ kij = 0. Hence we have ∇∂i∂j = 0 for all i, j except

∇∂ϕ∂ϕ = −r∂r , and ∇∂ϕ∂r = ∇∂r∂ϕ =
1
r
∂ϕ = U .
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By Figure 7, we see that ∂r and ∂ϕ are parallel if one moves in the z-direction. We
hence expect that ∇∂z∂ϕ = 0 = ∇∂z∂r , which also verified from our calculations.
Moreover, ∂z is parallel since it is a coordinate vector field in the natural basis of
R3.

Lorentzian and semi-Riemannian Geometry



2 Semi-Riemannian Metrics 30

Appendix

Let M is a smooth manifold and p ∈M. Let M has a chart (φ = (x1,x2, . . . ,xn),U ),
that is xi : U →R. One of the charts that will be used for sphere is the following:

U± = Sn \ {±(1,0,0, . . . ,0)}

ϕ± : U±→Rn, (x0,x1, . . . ,xn) 7→
1

±1− x0
(x1, . . . ,xn) .

The charts are (φ+,U+) and (φ−,U−).

○ Tangent Space: The tangent space TpM at p is the vector space of all tangent
vectors to M at p. A tangent vector is defined via a smooth curve γ : (−ϵ,ϵ)→M
with γ(0) = p. Two curves γ1,γ2 are equivalent if, in a local chart (U ,φ)
around p, their derivatives satisfy d

dtφ(γ1(t))
∣∣∣
t=0

= d
dtφ(γ2(t))

∣∣∣
t=0

. The tangent
space TpM consists of all such equivalence classes, with vector space operations
defined via the chart.

Alternatively, TpM can be defined as the vector space of all derivations at
p. A derivation at p is a linear map D : C∞(M) → R satisfying the Leibniz
rule: D(f g) = f (p)D(g) + g(p)D(f ) for all f ,g ∈ C∞(M), where C∞(M) is the
algebra of smooth functions on M. Each derivation corresponds to a tangent
vector, and TpM is the set of all such derivations.

1. TpRn �Rn. (Ex: Give a natural isomorphism from TpRn into Rn)

2. TpSn = {v ∈Rn+1 : p · v = 0}.
3. If f F : M→N is a smooth map, then it induces a map on the tangent space:

dFp : TpM→ TF(p)N ,

called the differnetial of f at p. Given v ∈ TpM, we let dFp(v) be the derivation
at F(p) that acts on f ∈ C∞(N ) by the rule dFp(v)(f ) = v(f ◦F).

4. The differential of a map between Euclidean spaces. Let F : Rn → Rm be a
smooth function and p ∈ Rn. Let x1, . . . ,xn be the coordinates on Rn and
y1, . . . ,ym the coordinates on Rm. Then the tangent vectors

{
∂
∂x1

(p), . . . , ∂
∂xn

(p)
}

forms a basis for the tangent space TpRn and { ∂∂y1
(F(p)), . . . , ∂

∂ym
(F(p))} forms

a basis for the tangent space TF(p)Rm. The linear map dFp = F∗ : TpRn →
TF(p)R

m is described by a matrix [aij ] relative to these two bases:

dFp

(
∂
∂xj

(p)

)
=

∑
k

ajk
∂
∂yk

(F(p)).
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5. The chain rule. let F : N →M and G : M→ P be smooth maps of manifolds,
and p ∈N . The differential are

TpN
dFp
−−−→ TF(p)M

dGF(p)
−−−−−−→ TG(F(p))P .

Then,
d(G ◦F)p = dgF(p) ◦ dFp.

6. Bases for the tangent space at a point. If (φ = (x1, . . . ,xn),U ) is a chart on M
containing p, then the tangent space TpM has basis

{
∂
∂x1

(p), . . . , ∂
∂xn

(p)
}
. To

understand this locally, let (r1, . . . ,rn) is the standard coordinate chart on Rn.
Since φ : U →Rn is a diffeomorphism, the differential

dφp : TpM→ Tφ(p)R
n

is a vector space isomorphism and dφ
(
∂
∂xi

(p)
)
= ∂

∂ri
(φ(p)). Since { ∂∂r1 , . . . , ∂

∂rn
}

is a basis for the tangent space Tφ(p)Rn and dφp is a vector space isomor-
phism, { ∂∂x1

(p), . . . , ∂
∂xn

(p)} is a basis for TpM.

○ Tangent Bundle: The tangent bundle of a manifold M is the union of all the
tangent spaces of M:

TM B
⋃
p∈M

TpM.

If M is smooth manifold of dimension n, then TM is a smooth manifold of
dimension 2n.

○ Vector bundles and section: Any surjective map π : E→M of manifolds is said
to be locally trivial of rank r if

(i) each fiber π−1(p) has the structure of a vector space of dimension r;

(ii) for each p ∈ M, there exists an open neighborhood U of p and a fiber-
preserving diffeomorphism φ : π−1(U )→ U ×Rr such that for any q ∈ U ,
the restriction

φ
∣∣∣
π−1(q)

: π−1(q)→ {q} ×Rr

is a vector space isomorphism.

A C∞ vector bundle of rank r is a triple (E,M,π) consisting of manifolds E,M
and a surjective map π : E → M that is locally trivial of rank r. The tangent
bundle is a vector bundle over M. A section of a vector bundle π : E→M is a
map s : M→ E such that π ◦ s = idM , the identity map on M.

○ Partition of Unity: A C∞ partition of unity on a manifold is a collection of
nonnegative C∞ functions {χα : M→R}α∈A such that
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(i) the collection of supports, {suppχα}α∈A, locally finite,

(ii)
∑
αχα = 1.

Given an open cover {Uα}α∈A of M, we say that a partition of unity {χα}α∈A is
subordinate to the open cover {Uα} if suppχα ⊆Uα for every α ∈ A.

○ Vector Field: A vector field X on a manifold M is the assignment of a tangent
vector Xp ∈ TpM to each point p ∈ M.More formally, a vector field on M is a
section of the tangent bundle TM of M. A vector field is smooth if the map
X : M→ TM is smooth as a section of the tangent bundle. In a coordinate chart
(φ = (x1, . . . ,xn),U ) on M,

X(p) = Xp B
n∑
i=1

ai(p)
∂
∂xi

(p),

where ai : U →R. A vector field X on U is smooth iff the coefficient functions ai
are all smooth on U . By the derivation definition of the tangent space, given any
smooth function f and a vector field X on M, we define Xf to be the function

(Xf )(p) = Xp(f ) =
∑
i

ai(p)
∂f

∂xi
, p ∈M.

The vector field X is smooth for every smooth function f on M, the function Xf
is smooth.

○ The Lie Bracket: Let X and Y be two smooth vector field on an open subset U
of a manifold M. We view X and Y as derivations on C∞(U ). We define their
Lie bracket [X,Y ] at p to be

[X,Y ]pf = (XpY −YpX)f , f ∈ C∞(U ).

○ Differential 1-Forms: Let M be a smooth manifold and p ∈M. The cotangent
space of M at p, denoted by T ∗pM, defined to be the dual space of the tangent
space TpM, that is,

T ∗pM = {f : TpM→R : f is linear }.

An element of the cotangent space T ∗pM is called a covector at p. Thus, a covector
ωp at p is a linear function ωp : TpM → R. A differential 1-form, or simply a
1-form on M is a function ω that assigns to each point p ∈M a covector ωp at p.
If f is a C∞ real-valued function on a manifold M, its differential is defined to be
the 1-form df on M such that for any p ∈M and Xp ∈ TpM,

(df )p(Xp) = Xpf .

If (φ,U ) is a coordinate chart on M, then the differentials dx1, . . . ,dxn are 1-
forms on U and the covectors (dx1)p, . . . , (dxn)p form a basis for the cotangent
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space T ∗pM dual to the basis ∂
∂x1

(p), . . . , ∂
∂xn

(p) for the tangent space. A local
expression for df can be given as

df =
n∑
i=1

∂f

∂xi
.

Similar to the tangent bundle, we have the cotangent bundle T ∗M defined as

T ∗M B
⋃
p∈M

T ∗pM.

In terms of the cotangent bundle, a 1-form on M is simply a section of the
cotangent bundle. In a coordinate chart (φ,U ),

ωp =
n∑
i=1

ai(p)(dxi)p.
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