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1 Introduction

The word symplectic was invented by Hermann Weyl in 1939. He replaced the Latin roots in the word
complex, com-plexus, by the corresponding Greek roots sym-plektikos.

1.1 An overview of geometry
* Geometry: Background Space (smooth manifold) + extra structure (tensor)

- Riemannian geometry: smooth manifold + metric structure

o metric structure = positive-definite symmetric 2-tensor
— Complex geometry: smooth manifold + complex structure

o complex structure = involutive endomorphism ((1,1)-tensor)
— Symplectic geometry: smooth manifold + symplectic structure

o symplectic structure = closed non-degenerate 2-form

— Contact geometry: smooth manifold + contact structure

o contact structure = “local contact 1-form”

In both symplectic and Riemannian geometry the main object of study is a smooth manifold
equipped with a bilinear form on each tangent space. In the Riemannian manifold, this form is a
symmetric, nondegenerate, positive definite form, turning each tangent space into normed vector
space. On the other hand, in symplectic geometry, we instead require a skew-symmetric bilinear
form on each tangent space, again varying smoothly. We still require that at each point p in our
manifold M, a skew-symmetric 2-form wp should be nondegenerate, that is,

w,(X,Y)=0 VY eT,M, then X = 0.

Finally, note that because w is a skew-symmetric 2-form, it must be closed, that is, dw = 0.
We will now compare both geometry and from next lecture onwards we will discuss in more
details. We will use the following notations:

* M :real finite dimensional smooth manifold without boundary.

e C®°(M)={f:M —>R:f is smooth}.

e x(M)={X:M — TM : X is a vector field}.

« QM) ={w:TMxTMx---xTM — R}.

We now start some comparison between Riemannian geometry and symplectic geometry:
(la) Riemannian manifold is a pair (M, (-,-)), where

o ()i x(M)xx(M) — C®(M) satisfies (X,Y) =(Y,X)and (f X +gY,Z) = f(X,Z) +
e(Y,Z).

* (-,-) is positive definite.

(2a) Symplectic manifold is a pair (M, w) where
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e weQ?(M) is bilinear.
* w is nondegenerate.

e wis closed, that is dw = 0.

(1b) Every smooth manifold is a Riemannian manifold.

(2b) Not all manifolds are Symplectic. The necessary conditions are:

e dimM = even.
* M is oriented.
« If M is compact, then H7,(M,RR) = 0.

(1c) Isometry: Two Riemannian manifolds (M, {,-)) and (M,,,(-,-)) are isometric if there exists
a C! map ¢ : M| — M, such that

2<d(Pp (X)ld(Pp(Y)>(p(p) = 1<X' Y>p

(2c) Similarly, we have symplectomorphism between two symplectic manifolds.

(1d) Curvature is a local invariant in Riemannian manifolds.

(2d) There are no local invariants (apart from dimension) in symplectic manifolds. According to
the Darboux-Weinstein theorem, given any two symplectic manifolds of the same finite dimen-
sion, they look alike locally.

2 Symplectic algebra
In this lecture, we will mostly recall the linear algebra preliminaries for our course. More pre-

cisely, we will deal with linear symplectic algebra which we will be using through out the course.

2.1 Some basic definitions

Definition 2.1 (Vector sapce). A set (V,+,-) is said to be a vector space over a field IF if the operations
+:VxV >Vand - :FxV -V,
satisfies the following properties. For any v,vy,v;,,v3 and a, p € IF we have the following.
1. (Commutativity) vi +v, = v, + v;.
2. (Associativity) (vi +v,) +v3 = v + (v + v3).

3. (Existence of additive identity) There exists 0 € V such that foranyveV 04+v=v=v+0.
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4. (Existence of additive inverse) For any v € V, there exists w such that v+ w =0 =w +v. We
will denote w = —v.

5. (Multiplicative identity) For anyve V,1-v =v.
6. (Multiplication associativity) (aB)-v=a-(B-v).
7. (Distribution law)

s (a+p)v=a-v+p-v.

s a(vit+vy)=a-vi+a-v,
Our field will always be either R or C.

Definition 2.2 (Lienar map). Let T : V — W be a map between two vector spaces V and W. Then T
is said to be linear if,
T(avy + pvy) = aT(v1) + BT (v2),

forvy,vy € Vand a,p eF.

Definition 2.3 (Dual space). If V is a vector space over a field F. Then the dual space of V, denoted
by V*, is defined by
Vi={p:V > F:q@islinear}.

Definition 2.4 (Bilinear map). Let V,W,S be vector spaces over a field F. The a bilinear map Bisa
map
B:VxW—>S§

such that B is linear in each argument. That is, B(-,w) : V — S and B(v,-) : W — S is linear for any
veVandweW.

Definition 2.5. A bilinear form w on a vector space V is a bilinear map B:V xV — . The bilinear
form w is said to be nondegenerate if the kernel

kerw:={veV:w(v,w) =0 forallwe V}
is trivial.
We identify a bilinear form w on E with the linear mapping u +— (v — w(u,v)) for u,v € E.
Definition 2.6. Let w be a bilinear form on a vector space V.
1. w is said to be symmetric if w(v,w) = w(w,v) for any v,w e V.

2. wis said to be skew-symmetric if w(v,w) = —w(w,v) forany v,w e V.

2.2 Symplectic vector space

The first important notions that we introduce are the symplectic form and the symplectic vector
space. We also define the concept of canonical form of a symplectic form and the symplectic
basis of a symplectic vector space. Throughout this notes, we will assume V to be a vector space
of finite dimension.

Definition 2.7. The pair (V,w) is said to be symplectic vector space if w : VXV — R is skew-
symmetric, nondegenerate bilinear form. We call w a symplectic form on E.

Remark. It follows from the definition that w(v,v) =0 for any v € V.
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Example 2.8. On R?" = R" x R" we define w by

n

w((xy),(X,y) =) (9] =xpi) = (xy) = (K, y).

i=1

We claim that w is a symplectic form on R?". Tt is clear that w is a bilinear form. Further, we
need to check two things:

(i) w is skew-symmetric.

For any (a,b), (c,d) € R" xIR", we have

w((c,d),(a,b)) =(b,c)—(a,d), and
@((a,b),(c,d)) = (a,d)—(b,c) = ~w((c,d),(a,b)).
(ii) w is nondegenerate.
Let w((x,y),(a,b)) = 0 for any (x,y) € R” x R". We need to show that (x,y) = (0,0). Take
a=0and b =x, then
w((x,),(0,x)) =0 = (x,x)—(y,00=0 = x=0.

Similarly, one can show that y = 0 and hence, w is nondegenerate.

This is called standard symplectic form on R" x R".
The above example can also be written in the following form:
Example 2.9. Let V = R?" with a basis {e},e5,...,e,, fi, f2..., 4} and define w as

a)(el-,e]-) =0, a)(fl,f]):O and a)(ez-,f]-)zéij.
Then w is standard symplectic form on V.

Example 2.10. Let V be any vector space of dimension n and V* denotes its dual. If E=V @ V*
and define
w:ExXxE—->R, o((v,a),@,a))=adv)-a(),

then (E,w) is a symplectic vector space.
Since a and a’ are linear maps, it is clear that w is a bilinear form. Let us show it is skew-
symmetric and nondegenerate.

(i) w is skew-symmetric.

For any v,v’ € V and a,a’ € V*, we have

(ii) w is nondegenerate.

Let w ((v,a),(w,B)) = 0 for any (w, ) € E. We need to show that v = 0 and @ = 0. Observe
that for any g € V*

w((v,a),(0,))=B(v)=0 = v=0.
Similarly, for any w e V,

w((v,a),(w0))=a(w)=0 = a=0.
5



Thus (E,w) is a symplectic vector space.

Definition 2.11. Let (V,w) is a symplectic vector space, then for any subspace W C V, we define the
w-orthogonal space
W¢={veV:w(v,w)=0,YweW}.

Proposition 2.12. Let V be a k-dimensional vector space over R and w be a bilinear form.

1. If w is symmetric with rank r, then there exists a basis I3 of V such that with respect to I3,

—61

[w]B: 0 , wheree; =1, i=1,2,...,r.

2. If w is skew-symmetric with rank r, then r = 2n and there is a basis B of Vrelative to which

0 I, 0
[w]g = {In 0 O] , where I,, is the identity matrix of size n.
0 0 O

Proof. 1. Proof is left.

2. Since w # 0, we can choose e, f; € V such that w(ey, f;) # 0 (this must implies that both the
vectors are linearly independent). By rescaling e;, we can further assume that w(ey, f;) = 1.
Define W, := spanf{ey, fi}. Since, w is skew-symmetric, we have w(ej,e;) = 0 = w(fi, f1)-
Thus, the restriction of w on Wj is

o 1
[w]{el'fl}_ -1 ol

Let W, be the w-orthogonal complement of Wy, thatis, W, = W/". It is clear that W, N W, =
{0}. We claim that V = W; & W,. Note that for any v € V, we have

w(e,v—w(v,fi)ey + w(v,e1)fi) =0and
w(fiv-w( fi)e+w(ve)fi)=0.

Thus, v —w(v, f1)e; + w(v,e1) fi € W5’ and hence V = W; & W,. We can repeat the process
on W, and find e, and f, such that w(e,, f) = 1. Now the matrix will be

0 0 10
1o 0 01
[Ohevernft) =21 0 0 0
0 -1 0 0

Inductively, we get a basis
B = {61,62,...,en,fl,fz,...,fn}

such that [w]z will be in the given form.



Remark. Since we focus on non-degenerate skew-symmetric bilinear form, that is, rank = 2n, we

. . . . [o 1,
may consider only the case with matrix representation

and V must be of even dimen-
-1, 0

sion.

We just showed the following corollary.

Corollary 2.13. Every finite dimensional symplectic vector space (V,w) has even dimension.

Exercise 2.14. Show that the space of skew-symmetric bilinear form is isomorphic to the space
A%V* of the second exterior product of V*.

Soif B ={ey,...,ey,} is a basis for V, and B is its dual, then for any w € A"V with the matrix
(a)l-j), relative to B, can also be written as

[a)]lg = Zwije; A e}f.
i<j

Remark. Since elements of A2V* are represented by anti-symmetric matrices and with all the

entries of the main diagonal equal to 0, for a vector space V of dimension 21 we have dim A2V* =

w =n(2n-1).

Corollary 2.15 (Canonical form of w). For every skew-symmetric bilinear form w, there exists a basis

B ={ey,...,ep,} of V such that
i<j

This representation is called a canonical form of w and we call B a symplectic basis of V.



2.3 Symplectomorphism

Definition 2.16. Two symplectic vector spaces (V1,w;) and (V,w,) are called symplectomorphic if
there exists an isomorphism @ : Vi — V, of vector space such that w, (¢(x),(v)) = w1 (x,v). In other
words, ¢*w, = wq. We call ¢ a symplectomorphism. We will write V; = V,.

Exercise 2.17. What can you conclude if dim V; =dim V, and ¢ : V| — V, satisfies ¢"w, = w;?
We claim that ¢ is injective. If v € ker @, then for any v’ € V|, we have
w1 (v,v") = w2 (@(v),@(v)) = 0.

Since, w; is nondegenerate, v = 0. Since the dimension matches, V; = V,.

Exercise 2.18. Show that the set of all symplectomorphisms of a symplectic vector space (V,w)
forms a group under the composition.

Definition 2.19. The group of symplectomorphism of a symplectic vector space (V,w) is called sym-
plectic group and we will denote this by Sp(V).

Example 2.20. Some examples on symplectomorphism:
1. V=R?" and w((a,b),(c,d)) = (a,d) —{(c,b).
* p(e;) = f; and @(f;) = —e;. If we change ¢(f;) = ¢;, will it work?
It is clear that ¢ is an isomorphism. We just need to show that ¢*@w = w. Note that
a)(e,-,ej) =0= a)(ﬁ,f])
5ij = w(p(e), p(f;)) = w(fi—e;) = —w(fire}) = w(ej. ) = 8-
* ¢(e;) = e+ fiand ¢(f;) = fi-

 For any invertible matrix X,

P(e;) = ZXi]’ej and ¢(fi) = Z(X_l)jiff'
j j

2. We show in Example 2.10 E = V @ V" is a symplectic vector space. We can give a symplec-
tomorphism on E as follows. Let T : V — V be an isomorphism and T*: V* — V" be the

dual map. Then
TeT :E—E,

is a symplectomorphism.

3. Let V be a complex vector space of complex dimension n, with complex, positive definite
inner product (=Hermitian metric) h: VxV — C.Then V, viewed as a real vector space, with
bilinear form the imaginary part w = Im(h) is a symplectic vector space. Every unitary map
V — V preserves h, hence also w and is therefore symplectic.

Exercise 2.21. Show that R?", E and the third example are symplectomorphic.

Proposition 2.22. Every symplectic vector space (V,w) of dimension 2n is symplectomorphic to R*"
with the canonical symplectic form.

As a consequence of the above proposition, we have the following theorem, which we call Linear
Darboux theorem.



Theorem 2.23 (Linear Darboux Theorem). For any symplectic vector space (V,w) there exists a basis
B ={e;, fi}_, of V such that

w(ei,ej) =0= w(ﬁ,f]) and a)(e,-,f]-) =0 Vi,j.
This basis is called a Darboux basis of V.
The above theorem is equivalent to following statements:
(i) Any symplectic vector space is even-dimensional.
(ii) Any even dimensional vector space admits a linear symplectic form.

(iii) Up to linear symplectomorphisms, there is a unique linear symplectic form on each even
dimensional vector space.

2.4 Subspaces of a symplectic vector space

Recall the Definition 2.11 of w-perpendicular space. Note that with our assumption that V is
finite dimensional, w is nondegenerate if and only if the map

VoV, ") (w)=w@w)Yr,weV
is an isomorphism.

Note. For any subspace W C V, we have
-1
W =(w") " (ann(W)),
where ann(W) is the annihilator of W, that is, the set of all f € V* such that f(w) =0 for w e W.
We have

veann(W) < foranywe W, (wb(v))(w) =0 = wlv,w)=0 < ve W%,
Definition 2.24. A subspace W C 'V of a symplectic vector space is called

(i) isotropic if W C WY, that is, 0;

w|W><W -
(ii) co-isotropic if W® C W, that is, W® is isotropic;

(iii) Lagrangian if W® = W, that is, W is isotropic and co-isotropic;
(iv) symplectic if wwxw is nondegenerate.
The set of Lagrangian subspaces of V is called the Lagrangian Grassmannian and denoted Lag(V).

Exercise 2.25. Show that W is symplectic if and only if W N W® = {0} .

Exercise 2.26. Let (V,w) is a symplectic vector space and W be any subspace of V. Consider the
map ¢ : V — W*, defined by ¢(v) = w(v)(w) for any v € V and w € W. Show that ¢ is surjective.
Deduce that dim W® = dim V —dim W. Also, show that (W®)“ = W.

Remark. 1. From Exercise 2.26, we conclude that if dimV = 2n, then all the isotropic sub-
spaces have dimension smaller or equal n, all the co-isotropic have dimension bigger or
equal n and all the Lagrangian subspace have dimension n.

2. If W C V is symplectic subspace, then it follows from the definition that W N W% = {0} and
therefore, from the dimension sum restriction (Exercise 2.26), we must have V =W @ W<,
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Example 2.27. Every 1-dimensional subspace of V is isotropic and every subspace with codimen-
sion 1 is co-isotropic.

Example 2.28. Consider V = IR?" with canonical symplectic form . Define

W, =span{e;,e,}.  Isotropic

{

W, = spanf{ey,ey,..., e, f3, fa,..., fu}. Co-isotropic
{ 2
{

W3 = spanf{ey,ey,...,e,}. Lagrangian

Wy =spanfey, fi}. Symplectic
Exercise 2.29. Let (V,w) be a symplectic vector space and W be any subspace of V.
1. Show that if W is isotropic, then dim W < %dim V.
2. Show that if W is Lagrangian, then dim W = S dim V..
3. Show that if W is Lagrangian, then any basis By, = {ej,e,,...,e,} of W can be extended to a
symplectic basis {ey,...,e,, fi,..., fu} of V.
Proposition 2.30. For any symplectic vector space (V,w), there exists a Lagrangian subspace L.

Proof. Since for every v € V we have w(v,v) = 0, V has an isotropic subspace. Let L C V be a
maximal isotropic subspace of V, that is, it is not contained in any isotropic subspace of strictly
larger dimension. Then we claim that L is Lagrangian, that is, L = L. We only need to show that
L is co-isotropic. Suppose not, take v € L \ L, then L’ = L @ span {v} is isotropic and larger than
L. O

An immediate consequence is that any symplectic vector space V has even dimension: For
if L is a Lagrangian subspace

dimV =dimL +dimL* = 2dim L.

From this proof we also conclude that a maximal isotropic subspace is a Lagrangian sub-
space. Therefore we have the following corollary.

Corollary 2.31. Every isotropic subspace is contained in a Lagrangian subspace.
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Some properties: Let W, W, W, be a subspaces of a symplectic vector space (V,w).
(1) dimW 4+ dim W® =dim V.
As per the hint given in Exercise 2.26, consider the map
p: VoW, @) =w(,).
Note that
kerp={veV:pv)=0={veV :iw(v,w)=0VweW}=W?.

Now, we claim that ¢ is surjective. Let f € W*, thatis, f : W — R is linear. As W C V,
we can extend the map f to V, say f. Since ¢ : V — V*, v > w(v,-) is an isomorphism,
there exists v € V such that ¢(v) = f. Thus, ¢(v) = f. So, Image(¢) = W*. Thus, using
rank-nullity theorem, we have

dimV =dim W' +dim W% = dim W 4+ dim W¢.

(2) (We)¥ =Ww.

Note that for any we W,

w(w,v)=0YveW" —= we (W)Y = WC (W%,
Using the dimension formula, we have
dim W® 4+ dim (W*)* =dimV =dim W + dim W¢
— dim W =dim (W®¥)" —= W = (W*).

(3) If Wy CW,, then W' C W/*.

Let w) € Wy’. For any w, € W,, w (wp,w}) = 0. For any w; € W; € W,, we must have

w(w)w;) =0 = w,y e W,

(4) If W is symplectic, then W W® = V.

We have

dim (W 4+ W?) =dimW +dim W¥ -dim (WNW%) —= W4+ W® =V.

(5) Every 1-dimensional subspace is isotropic.
(6) Every codimensional 1 subspace is co-isotropic.
(7) If W is Lagrangian, then dim W = %dim V.

(8) If W is Lagrangian, then any basis {ej,e;,...,¢,} of W can be extended to a symplectic basis

{er,eeren firees ful-

(9) If W is Lagrangian, then (V,w) is symplectomorphic to the space (W & W*,Q)), where Q(x @
a,y®p) = p(x) - a(y).

Example 2.32 (Quotient Space). Let (V,w) is a symplectic vector space and W be any isotropic
subspace of V. We define V/W :={[v] = v+ W : v € V}. Then there is a natural symplectic form
on W¥/W.
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Define
Q: WY/ WxW*/W >R, Q([],[v]) =wvv).

We need to verify that () is well-defined and is a symplectic form on W /W.
(i) Well-defined:
For any v,v" € W® and w,w’ € W we have
wv+wrv +v)=wvv)+olv,v)+owr)+olww)=wlr).

~—_———— ~_———— |
0 0 0

Here the middle terms vanish because of orthogonality and last term vanishes because W
is isotropic.

(ii) Bilinear: Exercise.
(iii) Skew-symmetric: Exercise.
(iv) Non-degenerate

For any v,v" € V, let

Q([v,[v]) =0 = wv)=0 = v=0.

Proposition 2.33. Given any finite collection of Lagrangian subspaces Ly,L,,...,Ly, of a symplectic
there exists a Lagrangian subspace L with LNL; = {0} foralli =1,2,...,k.

Proof. We will write the proofs in steps:

1. Step 1: Choose a maximal isotropic subspace L of V such that LN L; = {0}.

We can choose such an isotropic subspace because finite union of proper subspace can not
be the full space. Since L;’s are Lagrangian, so they are proper subspace of V and hence
U;L; € V. Choose a v € V which is not in any L;. Then span {v} is an isotropic subspace of
V such that intersection with any L; is trivial.

2. Step 2: We will show that L is Lagrangian. Suppose it is false, that is, L C L. From
Example 2.32, we know that L* /L has a symplectic form. Let 7 : L — L /L be the quotient
map. Then we have the following claims.

(a) For each i, the space 7t (L; N L) is isotropic.

Let () as defined in Example 2.32. Then we need to show that Q|n(Lan) = 0. This

is easy as for any [v], [v'] € © (L N L;)
Q([v], b)) = w(v,v)=0.

The last equality is because v,v’ € L; which is Lagrangian, in particular it is
isotropic.

(b) There exists a one dimensional space F C L% /L such that F is transversal to each of
TC (Lw N Ll)

Similar to the step 1, we can choose an element [v| € L /L away from each of
(LY NL;). Define F = span{[v]}. It is clear that FN (L N L;) = {0}, and hence they
are transversal.

Now we note that
12



e L':= 7! (F) is isotropic subspace of V;
e LC L and

e L'NL; ={0} for each i.

Combing all this, we get a contradiction to the choice of L. Thus, L is Lagrangian.
O

Remark. As a consequence of Proposition 2.33, one can give an alternative proof of the Linear
Darboux Theorem (Theorem 2.23).

Theorem 2.34. Every symplectic vector space (V,w) of dimension 2n is symplectomorphic to R*" with
the canonical symplectic form.

Proof. Use Proposition 2.30, let L, be a Lagrangian subspace of V. Now, using Proposition 2.33,
choose a Lagrangian subspace L, which is transversal to L;. Then, the map

Ll XLz — R, (ll,lz) g a)(ll,IQ).

is nondegenerate. This gives an isomorphism between L; and L} as shown by the composition

pil vy s
Note that
ker(p) ={l € Ly : () = i* (o’ (i(1))) = 0}

={heL:i"(w(l,v)) =0, veV)
= {0}.

Now, let {e},ey,...,¢e,} be a basis for L, and fi, f,,..., f,, be the dual basis for L}. Since L; and L,
are transversal to each other, {eq,e,,...,e,, f1, f2,..., f,} is a symplectic basis for V. O

Corollary 2.35. Let (V},w) and (V,,w;) be two symplectic vector spaces of same dimension. Let
L,L} € Vy,Ly, L, CV, be Lagrangian subspace such that Ly N L} and Ly N L} are trivial. Then there
exists a symplectomorphism ¢ : Vi — V, such that ¢(Ly) = L, and ¢(L}) = L.

2.5 Compatible Complex Structures

Definition 2.36. Let V be a real vector space. Then an automorphism | : V. — V is said to be a
complex structure on V if [ = —Id, that is, ] (J(v)) = —v for v € V. We will write this as (V,R,]).

Example 2.37. Take V = R. If V has a complex structure J, then J> = —Id. Let J(1) = a.
JU(1)=-1 = a’=-1,

a contradiction as a € R. So, on R, there is no complex structure.
Example 2.38. Tak V = R2. Define | as

J(e1) = ey and J (ey) = —e;.

Then it is easy to see that ] is a complex structure on R?.
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Example 2.39. Note that if n is odd, then IR"” does not admit a complex structure. As if there is a
complex structure J, then we must have

J?=-1d = det(]z):(—l)”:_l s (det])zz—l,

not possible.

The real vector space R"” admits a complex structure if and only if # is even. Let n = 2k. If
{e1,---,ek f1,---, fx} is a basis of R”, then define ] : R2k — R2k a5

J(e;) = fiand ] (f;) = —e;.

Then ] is a complex structure on R". On the other hand, if | exists, then

det(J?) = (-1)" = (det])* = (-1)" = n s even.
Theorem 2.40. Every real vector space (V,R,]) with a complex structure | is even dimensional.
Corollary 2.41. Every symplectic vector space admits a complex structure.
Definition 2.42. A complex structure | on a symplectic vector space (V,w) is said to be w-compatible,
i
! G (v,w) = w(v,](w))

is an inner product.
Remark. We note that | is w-compatible implies

w (Jvi,Jv2) = w (v1,22).

By using the properties of g, we have

© (Jv1,Jv2) = g (Jv1,v2) = g (v2,Jv1) = @(v2, 201 ) = w (v, —v1) = w(v1,72).

Indeed,

w (Jvi,Jvp) = @ (vy1,v7)

J is w-compatible { w(v,Jv)>0, Yv=0.

Thus, following tha above remark, we get if | is w-compatible, then J € Sp(V).
The next result say that compatible complex structures always exist on symplectic vector space.

Theorem 2.43. Let (V,w) be a symplectic vector space. Then there is a compatible complex structure
JonV.

Proof. Since V is a vector space, we choose an inner product G on V. Since w and G are nonde-
generate, the maps

w*(u)

ueV —— w(u,)eVv”
are isomorphisms between V and V*.
o
vevV rﬂ G(v,") e V*

Hence, we can find a linear map A: V — V such that w(u,v) = G(u, Av).

14



Note that for any u,v eV,

w(u)(v) =w(u,v)=G(u,Av) = G*(u)(Av)
=G (u)ocA=w"(U)VueV = G oA=w"

*

—A=G" o

If A> = —Id, then A is a compatible complex structure on V. Let us suppose that A? = —Id.
Note that,

G(ATu,v) =G (1,Av) = w(1,v) = —w(v,u) = -G(v,Au) = G(-Au,v),
which implies AT = —A, that is, A is skew-symmetric. We also note that
. (AAT)T = AAT, that is, AAT is symmetric and
e forany u =0, G(AATu,u) = G(ATu,ATu) > 0, that is, AAT is positive definite.

This implies that AAT is diagonalizable with positive eigenvalues ;. So there exists P € GL(n,R)
such that

AAT = Pdiag (A, )y,...,A2,).
So, we may take any real power of AAT. In particular,
VAAT = Pdiag(\/A_l,\/A—,...,\/A_M)P.
Then VAAT is symmetric and positive-definite. Let
] =(VAaT )_1 A.

This factorization A = VAAT] is called polar decompostion of A. Since A commutes with VAAT, |
must commute with VAAT. Now we have

o JT = ATVAAT b \/AAT(—A) = —J and
 Since AT = —A, we have JJT = Id. Thus, J* = -Id.

So, ] is a complex structure on V. Now it remains to show that it is compatible with w, that is
G;(u,v) = w(u,Jv) is an inner product. Equivalently,

(i) w(Ju,Jv) = w(u,v).

w (Ju,Jv) = G(Ju,AJv) = G(u,]'AJv) = G (1, A]'Jv) = G(u, Av) = w(u,v).

(ii) Forany v #0, w(v,Jv) > 0.

w(v,Jv) = G(v,AJv) = G(v, VAATv) > 0.

15
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