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1 Introduction

The word symplectic was invented by Hermann Weyl in 1939. He replaced the Latin roots in the word
complex, com-plexus, by the corresponding Greek roots sym-plektikos.

1.1 An overview of geometry

• Geometry: Background Space (smooth manifold) + extra structure (tensor)

– Riemannian geometry: smooth manifold + metric structure

◦ metric structure = positive-definite symmetric 2-tensor

– Complex geometry: smooth manifold + complex structure

◦ complex structure = involutive endomorphism ((1,1)-tensor)

– Symplectic geometry: smooth manifold + symplectic structure

◦ symplectic structure = closed non-degenerate 2-form

– Contact geometry: smooth manifold + contact structure

◦ contact structure = “local contact 1-form”

In both symplectic and Riemannian geometry the main object of study is a smooth manifold
equipped with a bilinear form on each tangent space. In the Riemannian manifold, this form is a
symmetric, nondegenerate, positive definite form, turning each tangent space into normed vector
space. On the other hand, in symplectic geometry, we instead require a skew-symmetric bilinear
form on each tangent space, again varying smoothly. We still require that at each point p in our
manifold M, a skew-symmetric 2-form ωp should be nondegenerate, that is,

ωp(X,Y ) = 0 ∀ Y ∈ TpM, then X ≡ 0.

Finally, note that because ω is a skew-symmetric 2-form, it must be closed, that is, dω = 0.
We will now compare both geometry and from next lecture onwards we will discuss in more
details. We will use the following notations:

• M : real finite dimensional smooth manifold without boundary.

• C∞(M) = {f : M→R : f is smooth}.

• χ(M) = {X : M→ TM : X is a vector field}.

• Ωk(M) = {ω : TM × TM × · · · × TM→R}.

We now start some comparison between Riemannian geometry and symplectic geometry:

(1a) Riemannian manifold is a pair (M,⟨·, ·⟩), where

• ⟨·, ·⟩ : χ(M) ×χ(M)→ C∞(M) satisfies ⟨X,Y ⟩ = ⟨Y ,X⟩ and
〈
f X + gY ,Z

〉
= f ⟨X,Z⟩+

g ⟨Y ,Z⟩.
• ⟨·, ·⟩ is positive definite.

(2a) Symplectic manifold is a pair (M,ω) where
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• ω ∈Ω2(M) is bilinear.

• ω is nondegenerate.

• ω is closed, that is dω = 0.

(1b) Every smooth manifold is a Riemannian manifold.

(2b) Not all manifolds are Symplectic. The necessary conditions are:

• dimM = even.

• M is oriented.

• If M is compact, then H2
dR(M,R) , 0.

(1c) Isometry: Two Riemannian manifolds (M1,1⟨·, ·⟩) and (M2,2⟨·, ·⟩) are isometric if there exists
a C1 map ϕ : M1→M2 such that

2

〈
dϕp(X),dϕp(Y )

〉
ϕ(p)

=
1
⟨X,Y ⟩p

(2c) Similarly, we have symplectomorphism between two symplectic manifolds.

(1d) Curvature is a local invariant in Riemannian manifolds.

(2d) There are no local invariants (apart from dimension) in symplectic manifolds. According to
the Darboux-Weinstein theorem, given any two symplectic manifolds of the same finite dimen-
sion, they look alike locally.

2 Symplectic algebra

In this lecture, we will mostly recall the linear algebra preliminaries for our course. More pre-
cisely, we will deal with linear symplectic algebra which we will be using through out the course.

2.1 Some basic definitions

Definition 2.1 (Vector sapce). A set (V ,+, ·) is said to be a vector space over a field F if the operations

+ : V ×V → V and · : F×V → V ,

satisfies the following properties. For any v,v1,v2,v3 and α,β ∈ F we have the following.

1. (Commutativity) v1 + v2 = v2 + v1.

2. (Associativity) (v1 + v2) + v3 = v1 + (v2 + v3).

3. (Existence of additive identity) There exists 0 ∈ V such that for any v ∈ V 0+ v = v = v+ 0.
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4. (Existence of additive inverse) For any v ∈ V , there exists w such that v +w = 0 = w+ v. We
will denote w = −v.

5. (Multiplicative identity) For any v ∈ V , 1 · v = v.

6. (Multiplication associativity) (αβ) · v = α · (β · v).

7. (Distribution law)

• (α+ β) · v = α · v+ β · v.

• α(v1 + v2) = α · v1 +α · v2.

Our field will always be either R or C.

Definition 2.2 (Lienar map). Let T : V →W be a map between two vector spaces V and W . Then T
is said to be linear if,

T (αv1 + βv2) = αT (v1) + βT (v2),

for v1,v2 ∈ V and α,β ∈ F.

Definition 2.3 (Dual space). If V is a vector space over a field F. Then the dual space of V , denoted
by V ∗, is defined by

V ∗B {ϕ : V → F : ϕ is linear} .

Definition 2.4 (Bilinear map). Let V ,W ,S be vector spaces over a field F. The a bilinear map B is a
map

B : V ×W → S

such that B is linear in each argument. That is, B(·,w) : V → S and B(v, ·) : W → S is linear for any
v ∈ V and w ∈W .

Definition 2.5. A bilinear form ω on a vector space V is a bilinear map B : V ×V → F. The bilinear
form ω is said to be nondegenerate if the kernel

kerωB
{
v ∈ V : ω(v,w) = 0 for all w ∈ V

}
is trivial.

We identify a bilinear form ω on E with the linear mapping u 7→ (v 7→ω(u,v)) for u,v ∈ E.

Definition 2.6. Let ω be a bilinear form on a vector space V .

1. ω is said to be symmetric if ω(v,w) = ω(w,v) for any v,w ∈ V .

2. ω is said to be skew-symmetric if ω(v,w) = −ω(w,v) for any v,w ∈ V .

2.2 Symplectic vector space

The first important notions that we introduce are the symplectic form and the symplectic vector
space. We also define the concept of canonical form of a symplectic form and the symplectic
basis of a symplectic vector space. Throughout this notes, we will assume V to be a vector space
of finite dimension.

Definition 2.7. The pair (V ,ω) is said to be symplectic vector space if ω : V × V → R is skew-
symmetric, nondegenerate bilinear form. We call ω a symplectic form on E.

Remark. It follows from the definition that ω(v,v) = 0 for any v ∈ V .
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Example 2.8. On R2n = Rn ×Rn we define ω by

ω((x,y), (x′,y′))B
n∑
i=1

(xiy
′
i − x

′
iyi) =

〈
x,y′

〉
−
〈
x′,y

〉
.

We claim that ω is a symplectic form on R2n. It is clear that ω is a bilinear form. Further, we
need to check two things:

(i) ω is skew-symmetric.

For any (a,b), (c,d) ∈Rn ×Rn, we have

ω((c,d), (a,b)) = ⟨b,c⟩ − ⟨a,d⟩ , and
ω((a,b), (c,d)) = ⟨a,d⟩ − ⟨b,c⟩= −ω((c,d), (a,b)).

(ii) ω is nondegenerate.

Let ω((x,y), (a,b)) = 0 for any (x,y) ∈Rn ×Rn. We need to show that (x,y) = (0,0). Take
a = 0 and b = x, then

ω((x,y), (0,x)) = 0 =⇒ ⟨x,x⟩ − ⟨y,0⟩= 0 =⇒ x = 0.

Similarly, one can show that y = 0 and hence, ω is nondegenerate.

This is called standard symplectic form on Rn ×Rn.

The above example can also be written in the following form:

Example 2.9. Let V = R2n with a basis {e1,e2, . . . ,en,f1,f2, . . . ,fn} and define ω as

ω(ei ,ej) = 0, ω(fi ,fj) = 0 and ω(ei ,fj) = δij .

Then ω is standard symplectic form on V .

Example 2.10. Let V be any vector space of dimension n and V ∗ denotes its dual. If E = V ⊕V ∗
and define

ω : E ×E→R, ω((v,α), (v′,α′)) = α′(v)−α(v′),

then (E,ω) is a symplectic vector space.
Since α and α′ are linear maps, it is clear that ω is a bilinear form. Let us show it is skew-
symmetric and nondegenerate.

(i) ω is skew-symmetric.

For any v,v′ ∈ V and α,α′ ∈ V ∗, we have

ω ((v,α), (v′,α′)) = α′(v)−α(v′)
= − (α(v′)−α′(v))
= ω ((v′,α′), (v,α)) .

(ii) ω is nondegenerate.

Let ω ((v,α), (w,β)) = 0 for any (w,β) ∈ E. We need to show that v = 0 and α ≡ 0. Observe
that for any β ∈ V ∗

ω ((v,α), (0,β)) = β(v) = 0 =⇒ v = 0.

Similarly, for any w ∈ V ,

ω ((v,α), (w,0)) = α(w) = 0 =⇒ α = 0.
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Thus (E,ω) is a symplectic vector space.

Definition 2.11. Let (V ,ω) is a symplectic vector space, then for any subspace W ⊆ V , we define the
ω-orthogonal space

Wω B
{
v ∈ V : ω(v,w) = 0, ∀ w ∈W

}
.

Proposition 2.12. Let V be a k-dimensional vector space over R and ω be a bilinear form.

1. If ω is symmetric with rank r, then there exists a basis B of V such that with respect to B,

[ω]B =



ϵ1
. . .

ϵr
0

. . .
0


, where ϵi = ±1, i = 1,2, . . . ,r.

2. If ω is skew-symmetric with rank r, then r = 2n and there is a basis B of V relative to which

[ω]B =

 0 In 0
−In 0 0
0 0 0

 , where In is the identity matrix of size n.

Proof. 1. Proof is left.

2. Since ω , 0, we can choose e1,f1 ∈ V such that ω(e1,f1) , 0 (this must implies that both the
vectors are linearly independent). By rescaling e1, we can further assume that ω(e1,f1) = 1.
Define W1 B span {e1,f1}. Since, ω is skew-symmetric, we have ω(e1,e1) = 0 = ω(f1,f1).
Thus, the restriction of ω on W1 is

[ω]{e1,f1} =

[
0 1
−1 0

]
.

LetW2 be the ω-orthogonal complement ofW1, that is, W2 =Wω
1 . It is clear thatW1∩W2 =

{0}. We claim that V =W1 ⊕W2. Note that for any v ∈ V , we have

ω (e1,v −ω(v,f1)e1 +ω(v,e1)f1) = 0 and
ω (f1,v −ω(v,f1)e1 +ω(v,e1)f1) = 0.

Thus, v −ω(v,f1)e1 +ω(v,e1)f1 ∈Wω
2 and hence V = W1 ⊕W2. We can repeat the process

on W2 and find e2 and f2 such that ω(e2,f2) = 1. Now the matrix will be

[ω]{e1,e2,f1,f2} =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


Inductively, we get a basis

B = {e1,e2, . . . ,en,f1,f2, . . . ,fn}

such that [ω]B will be in the given form.
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Remark. Since we focus on non-degenerate skew-symmetric bilinear form, that is, rank = 2n, we

may consider only the case with matrix representation
[

0 In
−In 0

]
and V must be of even dimen-

sion.

We just showed the following corollary.

Corollary 2.13. Every finite dimensional symplectic vector space (V ,ω) has even dimension.

Exercise 2.14. Show that the space of skew-symmetric bilinear form is isomorphic to the space
∧2V ∗ of the second exterior product of V ∗.

So if B = {e1, . . . ,e2n} is a basis for V , and B∗ is its dual, then for any ω ∈ ∧∗V with the matrix(
ωij

)
, relative to B, can also be written as

[ω]B =
∑
i<j

ωije
∗
i ∧ e

∗
j .

Remark. Since elements of ∧2V ∗ are represented by anti-symmetric matrices and with all the
entries of the main diagonal equal to 0, for a vector space V of dimension 2nwe have dim∧2V ∗ =
2n(2n−1)

2 = n(2n− 1).

Corollary 2.15 (Canonical form of ω). For every skew-symmetric bilinear form ω, there exists a basis
B = {e1, . . . ,e2n} of V such that

[ω]B =
∑
i<j

e∗i ∧ e
∗
j .

This representation is called a canonical form of ω and we call B a symplectic basis of V .
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2.3 Symplectomorphism

Definition 2.16. Two symplectic vector spaces (V1,ω1) and (V2,ω2) are called symplectomorphic if
there exists an isomorphism ϕ : V1→ V2 of vector space such thatω2 (ϕ(x),ϕ(y)) = ω1(x,y). In other
words, ϕ∗ω2 = ω1. We call ϕ a symplectomorphism. We will write V1 � V2.

Exercise 2.17. What can you conclude if dimV1 = dimV2 and ϕ : V1→ V2 satisfies ϕ∗ω2 = ω1?

We claim that ϕ is injective. If v ∈ kerϕ, then for any v′ ∈ V1, we have

ω1(v,v′) = ω2(ϕ(v),ϕ(v
′)) = 0.

Since, ω1 is nondegenerate, v = 0. Since the dimension matches, V1 � V2.

Exercise 2.18. Show that the set of all symplectomorphisms of a symplectic vector space (V ,ω)
forms a group under the composition.

Definition 2.19. The group of symplectomorphism of a symplectic vector space (V ,ω) is called sym-
plectic group and we will denote this by Sp(V ).

Example 2.20. Some examples on symplectomorphism:

1. V = R2n and ω((a,b), (c,d)) = ⟨a,d⟩ − ⟨c,b⟩.

• ϕ(ei) = fi and ϕ(fi) = −ei . If we change ϕ(fi) = ei , will it work?

It is clear that ϕ is an isomorphism. We just need to show that ϕ∗ω = ω. Note that

ω
(
ei ,ej

)
= 0 = ω

(
fi ,fj

)
.

δij = ω
(
ϕ(ei),ϕ(fj)

)
= ω

(
fi ,−ej

)
= −ω

(
fi ,ej

)
= ω

(
ej ,fi

)
= δij .

• ϕ(ei) = ei + fi and ϕ(fi) = fi .

• For any invertible matrix X,

ϕ(ei) =
∑
j

Xijej and ϕ(fi) =
∑
j

(
X−1

)
ji
fj .

2. We show in Example 2.10 E = V ⊕V ∗ is a symplectic vector space. We can give a symplec-
tomorphism on E as follows. Let T : V → V be an isomorphism and T ∗ : V ∗ → V ∗ be the
dual map. Then

T ⊕ T ∗ : E→ E,

is a symplectomorphism.

3. Let V be a complex vector space of complex dimension n, with complex, positive definite
inner product (=Hermitian metric) h : V ×V → C.Then V , viewed as a real vector space, with
bilinear form the imaginary partω = Im(h) is a symplectic vector space. Every unitary map
V → V preserves h, hence also ω and is therefore symplectic.

Exercise 2.21. Show that R2n,E and the third example are symplectomorphic.

Proposition 2.22. Every symplectic vector space (V ,ω) of dimension 2n is symplectomorphic to R2n

with the canonical symplectic form.

As a consequence of the above proposition, we have the following theorem, which we call Linear
Darboux theorem.
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Theorem 2.23 (Linear Darboux Theorem). For any symplectic vector space (V ,ω) there exists a basis
B = {ei ,fi}ni=1 of V such that

ω(ei ,ej) = 0 = ω(fi ,fj) and ω(ei ,fj) = δij ∀ i, j.

This basis is called a Darboux basis of V .

The above theorem is equivalent to following statements:

(i) Any symplectic vector space is even-dimensional.

(ii) Any even dimensional vector space admits a linear symplectic form.

(iii) Up to linear symplectomorphisms, there is a unique linear symplectic form on each even
dimensional vector space.

2.4 Subspaces of a symplectic vector space

Recall the Definition 2.11 of ω-perpendicular space. Note that with our assumption that V is
finite dimensional, ω is nondegenerate if and only if the map

ω♭ : V → V ∗, ω♭(v)(w) = ω(v,w) ∀ v,w ∈ V

is an isomorphism.

Note. For any subspace W ⊂ V , we have

Wω =
(
w♭

)−1
(ann(W )) ,

where ann(W ) is the annihilator of W , that is, the set of all f ∈ V ∗ such that f (w) = 0 for w ∈W .

We have

v ∈ ann(W ) ⇐⇒ for any w ∈W ,
(
ω♭(v)

)
(w) = 0 ⇐⇒ ω(v,w) = 0 ⇐⇒ v ∈Wω.

Definition 2.24. A subspace W ⊆ V of a symplectic vector space is called

(i) isotropic if W ⊆Wω, that is, ω
∣∣∣
W×W = 0;

(ii) co-isotropic if Wω ⊆W , that is, Wω is isotropic;

(iii) Lagrangian if Wω =W , that is, W is isotropic and co-isotropic;

(iv) symplectic if ωW×W is nondegenerate.

The set of Lagrangian subspaces of V is called the Lagrangian Grassmannian and denoted Lag(V ).

Exercise 2.25. Show that W is symplectic if and only if W ∩Wω = {0} .

Exercise 2.26. Let (V ,ω) is a symplectic vector space and W be any subspace of V . Consider the
map ϕ : V →W ∗, defined by ϕ(v) = ω(v)(w) for any v ∈ V and w ∈W . Show that ϕ is surjective.
Deduce that dimWω = dimV −dimW . Also, show that (Wω)ω =W .

Remark. 1. From Exercise 2.26, we conclude that if dimV = 2n, then all the isotropic sub-
spaces have dimension smaller or equal n, all the co-isotropic have dimension bigger or
equal n and all the Lagrangian subspace have dimension n.

2. If W ⊆ V is symplectic subspace, then it follows from the definition that W ∩Wω = {0} and
therefore, from the dimension sum restriction (Exercise 2.26), we must have V =W ⊕Wω.
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Example 2.27. Every 1-dimensional subspace of V is isotropic and every subspace with codimen-
sion 1 is co-isotropic.

Example 2.28. Consider V = R2n with canonical symplectic form ω. Define

W1 = span {e1,e2} . Isotropic
W2 = span {e1,e2, . . . ,en,f3,f4, . . . ,fn} . Co-isotropic
W3 = span {e1,e2, . . . ,en} . Lagrangian
W4 = span {e1,f1} . Symplectic

Exercise 2.29. Let (V ,ω) be a symplectic vector space and W be any subspace of V .

1. Show that if W is isotropic, then dimW ≤ 1
2 dimV .

2. Show that if W is Lagrangian, then dimW = 1
2 dimV .

3. Show that if W is Lagrangian, then any basis BW = {e1,e2, . . . ,en} of W can be extended to a
symplectic basis {e1, . . . ,en,f1, . . . ,fn} of V .

Proposition 2.30. For any symplectic vector space (V ,ω), there exists a Lagrangian subspace L.

Proof. Since for every v ∈ V we have ω(v,v) = 0, V has an isotropic subspace. Let L ⊆ V be a
maximal isotropic subspace of V , that is, it is not contained in any isotropic subspace of strictly
larger dimension. Then we claim that L is Lagrangian, that is, Lω = L. We only need to show that
L is co-isotropic. Suppose not, take v ∈ Lω \ L, then L′ = L⊕ span {v} is isotropic and larger than
L.

An immediate consequence is that any symplectic vector space V has even dimension: For
if L is a Lagrangian subspace

dimV = dimL+ dimLω = 2dimL.

From this proof we also conclude that a maximal isotropic subspace is a Lagrangian sub-
space. Therefore we have the following corollary.

Corollary 2.31. Every isotropic subspace is contained in a Lagrangian subspace.
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Some properties: Let W ,W1,W2 be a subspaces of a symplectic vector space (V ,ω).

(1) dimW + dimWω = dimV .

As per the hint given in Exercise 2.26, consider the map

ϕ : V →W ∗, ϕ(v) = ω(v, ·).

Note that

kerϕ =
{
v ∈ V : ϕ(v) = 0

}
=

{
v ∈ V : ω(v,w) = 0∀ w ∈W

}
=Wω.

Now, we claim that ϕ is surjective. Let f ∈ W ∗, that is, f : W → R is linear. As W ⊆ V ,
we can extend the map f to V , say f̃ . Since ϕ̃ : V → V ∗, v 7→ ω(v, ·) is an isomorphism,
there exists v ∈ V such that ϕ̃(v) = f̃ . Thus, ϕ(v) = f . So, Image(ϕ) = W ∗. Thus, using
rank-nullity theorem, we have

dimV = dimW ∗+ dimWω = dimW + dimWω.

(2) (Wω)ω =W .

Note that for any w ∈W ,

ω(w,v) = 0,∀ v ∈Wω =⇒ w ∈ (Wω)ω =⇒ W ⊆ (Wω)ω .

Using the dimension formula, we have

dimWω+ dim (Wω)ω = dimV = dimW + dimWω

=⇒ dimW = dim (Wω)ω =⇒ W = (Wω)ω .

(3) If W1 ⊆W2, then Wω
2 ⊆W

ω
1 .

Let w′2 ∈W
ω
2 . For any w2 ∈W2, ω (w2,w′2) = 0. For any w1 ∈W1 ⊆W2, we must have

ω(w′2,w1) = 0 =⇒ w2 ∈Wω
1 .

(4) If W is symplectic, then W ⊕Wω = V .

We have

dim (W +Wω) = dimW + dimWω −dim (W ∩Wω) =⇒ W +Wω = V .

(5) Every 1-dimensional subspace is isotropic.

(6) Every codimensional 1 subspace is co-isotropic.

(7) If W is Lagrangian, then dimW = 1
2 dimV .

(8) If W is Lagrangian, then any basis {e1,e2, . . . ,en} of W can be extended to a symplectic basis
{e1, . . . ,en,f1, . . . ,fn}.

(9) If W is Lagrangian, then (V ,ω) is symplectomorphic to the space (W ⊕W ∗,Ω), where Ω(x⊕
α,y ⊕ β) = β(x)−α(y).

Example 2.32 (Quotient Space). Let (V ,ω) is a symplectic vector space and W be any isotropic
subspace of V . We define V /W B

{
[v] = v+W : v ∈ V

}
. Then there is a natural symplectic form

on Wω/W .
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Define
Ω : Wω/W ×Wω/W →R, Ω([v], [v′])Bω(v,v′).

We need to verify that Ω is well-defined and is a symplectic form on Wω/W .

(i) Well-defined:

For any v,v′ ∈Wω and w,w′ ∈W we have

ω (v+w,v′ +w′) = ω(v,v′) +ω(v,w′)︸   ︷︷   ︸
0

+ω(w,v′)︸   ︷︷   ︸
0

+ω(w,w′)︸    ︷︷    ︸
0

= ω(v,v′).

Here the middle terms vanish because of orthogonality and last term vanishes because W
is isotropic.

(ii) Bilinear: Exercise.

(iii) Skew-symmetric: Exercise.

(iv) Non-degenerate

For any v,v′ ∈ V , let

Ω ([v], [v′]) = 0 =⇒ ω(v,v′) = 0 =⇒ v = 0.

Proposition 2.33. Given any finite collection of Lagrangian subspaces L1,L2, . . . ,Lk, of a symplectic
there exists a Lagrangian subspace L with L∩Li = {0} for all i = 1,2, . . . ,k.

Proof. We will write the proofs in steps:

1. Step 1 : Choose a maximal isotropic subspace L of V such that L∩Li = {0}.
We can choose such an isotropic subspace because finite union of proper subspace can not
be the full space. Since Li ’s are Lagrangian, so they are proper subspace of V and hence⋃
i Li ⊊ V . Choose a v ∈ V which is not in any Li . Then span {v} is an isotropic subspace of

V such that intersection with any Li is trivial.

2. Step 2 : We will show that L is Lagrangian. Suppose it is false, that is, Lω ⊊ L. From
Example 2.32, we know that Lω/L has a symplectic form. Let π : Lω→ Lω/L be the quotient
map. Then we have the following claims.

(a) For each i, the space π (Li ∩Lω) is isotropic.

Let Ω as defined in Example 2.32. Then we need to show that Ω
∣∣∣
π(Li∩Lω)

= 0. This

is easy as for any [v], [v′] ∈ π (Lω ∩Li)

Ω ([v], [v]′) = ω(v,v′) = 0.

The last equality is because v,v′ ∈ Li which is Lagrangian, in particular it is
isotropic.

(b) There exists a one dimensional space F ⊆ Lω/L such that F is transversal to each of
π (Lω ∩Li).

Similar to the step 1, we can choose an element [v] ∈ Lω/L away from each of
π (Lω ∩Li). Define F = span

{
[v]

}
. It is clear that F∩ (Lω ∩Li) = {0}, and hence they

are transversal.

Now we note that
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• L′ B π−1(F) is isotropic subspace of V ;

• L ⊊ L′ and

• L′ ∩Li = {0} for each i.

Combing all this, we get a contradiction to the choice of L. Thus, L is Lagrangian.

Remark. As a consequence of Proposition 2.33, one can give an alternative proof of the Linear
Darboux Theorem (Theorem 2.23).

Theorem 2.34. Every symplectic vector space (V ,ω) of dimension 2n is symplectomorphic to R2n with
the canonical symplectic form.

Proof. Use Proposition 2.30, let L1 be a Lagrangian subspace of V . Now, using Proposition 2.33,
choose a Lagrangian subspace L2 which is transversal to L1. Then, the map

L1 ×L2→R, (l1, l2) 7→ω(l1, l2).

is nondegenerate. This gives an isomorphism between L1 and L∗2 as shown by the composition

ψ : L1
i
↪−→ V

ω♭−−→ V ∗
i∗−→ L∗2.

Note that

ker(ψ) =
{
l1 ∈ L1 : ψ(l1) = i∗

(
ω♭ (i(l1))

)
= 0

}
=

{
l1 ∈ L1 : i∗ (ω(l1,v)) = 0, v ∈ V

}
= {0}.

Now, let {e1,e2, . . . ,en} be a basis for L1 and f1,f2, . . . ,fn be the dual basis for L∗2. Since L1 and L2
are transversal to each other, {e1,e2, . . . ,en,f1,f2, . . . ,fn} is a symplectic basis for V .

Corollary 2.35. Let (V1,ω1) and (V2,ω2) be two symplectic vector spaces of same dimension. Let
L1,L′1 ⊆ V1,L2,L′2 ⊆ V2 be Lagrangian subspace such that L1 ∩ L′1 and L2 ∩ L′2 are trivial. Then there
exists a symplectomorphism ϕ : V1→ V2 such that ϕ(L1) = L2 and ϕ(L′1) = L′2.

2.5 Compatible Complex Structures

Definition 2.36. Let V be a real vector space. Then an automorphism J : V → V is said to be a
complex structure on V if J2 = −Id, that is, J(J(v)) = −v for v ∈ V . We will write this as (V ,R, J).

Example 2.37. Take V = R. If V has a complex structure J , then J2 = −Id. Let J(1) = α.

J(J(1)) = −1 =⇒ α2 = −1,

a contradiction as α ∈R. So, on R, there is no complex structure.

Example 2.38. Tak V = R2. Define J as

J (e1) = e2 and J (e2) = −e1.

Then it is easy to see that J is a complex structure on R2.
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Example 2.39. Note that if n is odd, then Rn does not admit a complex structure. As if there is a
complex structure J , then we must have

J2 = −Id =⇒ det
(
J2
)
= (−1)n = −1 =⇒ (det J)2 = −1,

not possible.

The real vector space Rn admits a complex structure if and only if n is even. Let n = 2k. If
{e1, . . . ,ek,f1, . . . ,fk} is a basis of Rn, then define J : R2k→R2k, as

J (eI ) = fi and J (fi) = −ei .

Then J is a complex structure on Rn. On the other hand, if J exists, then

det(J2) = (−1)n =⇒ (det J)2 = (−1)n =⇒ n is even.

Theorem 2.40. Every real vector space (V ,R, J) with a complex structure J is even dimensional.

Corollary 2.41. Every symplectic vector space admits a complex structure.

Definition 2.42. A complex structure J on a symplectic vector space (V ,ω) is said to beω-compatible,
if

GJ(v,w) = ω(v, J(w))

is an inner product.

Remark. We note that J is ω-compatible implies

ω (Jv1, Jv2) = ω (v1,v2) .

By using the properties of g, we have

ω (Jv1, Jv2) = g (Jv1,v2) = g (v2, Jv1) = ω
(
v2, J2v1

)
= ω(v2,−v1) = ω(v1,v2).

Indeed,

J is ω-compatible ⇐⇒
{
ω (Jv1, Jv2) = ω (v1,v2)
ω (v, Jv) > 0, ∀ v , 0.

Thus, following tha above remark, we get if J is ω-compatible, then J ∈ Sp(V ).

The next result say that compatible complex structures always exist on symplectic vector space.

Theorem 2.43. Let (V ,ω) be a symplectic vector space. Then there is a compatible complex structure
J on V .

Proof. Since V is a vector space, we choose an inner product G on V . Since ω and G are nonde-
generate, the maps

u ∈ V
ω∗(u)
7−−−−−→ ω(u, ·) ∈ V ∗

v ∈ V
G∗(v)
7−−−−−→ G(v, ·) ∈ V ∗

 are isomorphisms between V and V ∗.

Hence, we can find a linear map A : V → V such that ω(u,v) = G(u,Av).
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Note that for any u,v ∈ V ,

ω∗(u)(v) = ω(u,v) = G(u,Av) = G∗(u)(Av)

=⇒ G∗(u) ◦A= ω∗(u) ∀ u ∈ V =⇒ G∗ ◦A= ω∗

=⇒ A= G∗
−1
◦ω∗.

If A2 = −Id, then A is a compatible complex structure on V . Let us suppose that A2 , −Id.
Note that,

G
(
AT u,v

)
= G (u,Av) = ω(u,v) = −ω(v,u) = −G(v,Au) = G(−Au,v),

which implies AT = −A, that is, A is skew-symmetric. We also note that

•
(
AAT

)T
= AAT , that is, AAT is symmetric and

• for any u , 0, G
(
AAT u,u

)
= G

(
AT u,AT u

)
> 0, that is, AAT is positive definite.

This implies that AAT is diagonalizable with positive eigenvalues λi . So there exists P ∈ GL(n,R)
such that

AAT = Pdiag (λ1,λ2, . . . ,λ2n) .

So, we may take any real power of AAT . In particular,
√
AAT B Pdiag

(√
λ1,

√
λ2, . . . ,

√
λ2n

)
P .

Then
√
AAT is symmetric and positive-definite. Let

J =
(√
AAT

)−1
A.

This factorization A=
√
AAT J is called polar decompostion of A. Since A commutes with

√
AAT , J

must commute with
√
AAT . Now we have

• JT = AT
√
AAT

−1
=
√
AAT (−A) = −J and

• Since AT = −A, we have JJT = Id. Thus, J2 = −Id.

So, J is a complex structure on V . Now it remains to show that it is compatible with ω, that is
Gj(u,v) = ω(u, Jv) is an inner product. Equivalently,

(i) ω (Ju, Jv) = ω(u,v).

ω (Ju, Jv) = G(Ju,AJv) = G
(
u, J tAJv

)
= G

(
u,AJ tJv

)
= G(u,Av) = ω(u,v).

(ii) For any v , 0, ω(v, Jv) > 0.

ω(v, Jv) = G(v,AJv) = G
(
v,
√
AAT v

)
> 0.
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