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What are Polynomials?

» A real polynomial in one variable is of the form

p(x) = ag + a1x + apx® + azx® + ... apx",

where a; € R.
» We call

a; coefficient of x!
Ay constant term or coefficient of x°
n  degree of the polynomial if a,, # 0

» A constant polynomial is a polynomial with only
constant terms. A zero polynomial is a constant
polynomial with constant term zero.
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Non-examples

@ +2x  power of x is a fraction
X+ +x?  power of x is negative

2

e* +sinx —x~  there is no power of x
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p(x) = Z a;x'.
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Equal polynomials

We call two polynomials p(x) and g(x) are equal if the
degree are same and the corresponding coefficients are
same. That is, if

x):i:aixi and g(x) = be
-y

then
p(x) =q(x) <= ny =ny = n (say)
and
a,=>b; fori=0,1,2,...,n



Taylor’s Expansion

If f has derivatives of all orders at x = a, then the Taylor
series for the function f at a is

Flx) = £(a) + £ @) (x — a) + LD (x - a?
+~~~+]&!(a)(x—a)”+...

n

In the summation notation we can write

© (n)(,
)= ¥ e -a
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Examples

Problem
Find the Taylor’s expansion of the function e* around x = 0

Solution: Let us write f(x) = e*. According to the

Taylor’s expansion,
o — 3 £00)
= ! '

Let us evaluate each terms.
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n=2 f@A0)==1 Lx2=2
n=3 fGO)=e =1 %x3:%3
n=4 fW0O)=e =1 %x‘Lzﬁ

Thus,
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Example Cont...

2
n=2 f@0)=e=1 %xzz%
3
n=3 fGO)=e =1 P%x?’:%
4
n=4 fA0)=e=1 Lat=12
Thus,
PN R e
e* —1+x+2+3'+4|+ +m+...

:|><



Maclaurin Series

In the Taylor’s series, if we take a = 0, then the
corresponding series is called Maclaurin Series.

©  ¢(n)
f(x) — Zof (O) X"

n!
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Taylor’s Polynomial

1. Find the first three Taylor’s polynomial for
f(x) =Inxatx =1.

2. Find the first four Taylor’s polynomial for f(x) = %
atx = 2.

3. Find the first few terms of the Taylor series for the
function f(x) = % (2x 4 x cos x) using power series
operations.
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Maclaurin series of some functions

Find the Maclaurin series of the following functions.
L f(x)=(1+x)kkeN.

2. f(x) =sinx
3. f(x) =cosx
4. f(x) = 5
5. flx)=¢



Maclaurin series of some functions

Find the Maclaurin series of the following functions.

1. f(x) = (1+x)* keN.
2. f(x) =sinx

3. f(x) =cosx

4 @) = 1

5. f(x) =¢*

Problem

Find the Maclaurin series for the function

f(x) =sin (e’ — 1)

up to the term x*,
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More problems

» Using Taylor’s theorem, express the polynomial
p(x) =22 +7x%+x -6

in powers of (x — 1).
» Obtain the fourth-degree Taylor’s polynomial

approximation to f(x) = e** about x = 0. Find the
maximum error when 0 < x < 0.5.
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Taylor’s Theorem with Remainder

where

for some ¢ € (a, x).
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Gamma function

The gamma function is the extension of factorial func-
tion to real numbers.

— Leonhard Euler

The gamma function can be seen as a solution to the
interpolation problem of finding a smooth curve y =
f(x) that connects the points of the factorial sequence
(x,y) = (n,n!) all positive integer values of n.

— Wikipedia
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Definition of Gamma function

For any positive real number z, the Gamma function

is defined as
I'(z) = / - le~tdt.
0
Properties:
» I'(n+1) =n!forany n > 0.
> T (%) = /7.

» Foranyn > 0,T'(n+1) = nl'(n).
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