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What are Polynomials?

▶ A real polynomial in one variable is of the form

p(x) = a0 + a1x + a2x2 + a3x3 + . . . anxn,

where ai ∈ R.
▶ We call

ai coefficient of xi

a0 constant term or coefficient of x0

n degree of the polynomial if an ̸= 0

▶ A constant polynomial is a polynomial with only
constant terms. A zero polynomial is a constant
polynomial with constant term zero.
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Examples

2 = 2 · x0 degree = 0 constant polynomial

x + 1 degree = 1 linear polynomial

2x2 + x + 1 degree = 2 quadratic polynomial

x3 + 2x − 1 degree = 3 cubic polynomial

x6 − x4 + 3
4 x + 1 degree = 6

(x − 2)150 degree = 150
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Non-examples

√
x + 2x power of x is a fraction

x + 1
x

+ x2 power of x is negative

ex + sin x − x2 there is no power of x
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The summation notation

We can write the polynomial

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

as

p(x) =
n

∑
i=0

aixi.
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Equal polynomials

We call two polynomials p(x) and q(x) are equal if

the
degree are same and the corresponding coefficients are
same. That is, if

p(x) =
n1

∑
i=0

aixi and q(x) =
n2

∑
i=0

bixi,

then
p(x) = q(x) ⇐⇒ n1 = n2 = n (say)

and
ai = bi for i = 0, 1, 2, . . . , n.
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Taylor’s Expansion

If f has derivatives of all orders at x = a, then the Taylor
series for the function f at a is

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2

+ · · ·+ f (n)(a)
n!

(x − a)n + . . .

In the summation notation we can write

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x − a)n.



Examples

Problem
Find the Taylor’s expansion of the function ex around x = 0.

Solution: Let us write f (x) = ex. According to the
Taylor’s expansion,

ex =
∞

∑
n=0

f (n)(0)
n!

xn.

Let us evaluate each terms.

n = 0 f (0) = e0 = 1 1
0! x

0 = 1

n = 1 f (1)(0) = e0 = 1 1
1! x = x
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Example Cont...

n = 2 f (2)(0) = e0 = 1 1
2! x

2 = x2

2

n = 3 f (3)(0) = e0 = 1 1
3! x

3 = x3

6

n = 4 f (4)(0) = e0 = 1 1
4! x

4 = x4

24

Thus,

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ . . .

=
∞

∑
n=0

xn

n!
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Maclaurin Series

In the Taylor’s series, if we take a = 0, then the
corresponding series is called Maclaurin Series.

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn



Taylor’s Polynomial

1. Find the first three Taylor’s polynomial for
f (x) = ln x at x = 1.

2. Find the first four Taylor’s polynomial for f (x) = 1
x2

at x = 2.
3. Find the first few terms of the Taylor series for the

function f (x) = 1
3 (2x + x cos x) using power series

operations.



Taylor’s Polynomial

1. Find the first three Taylor’s polynomial for
f (x) = ln x at x = 1.

2. Find the first four Taylor’s polynomial for f (x) = 1
x2

at x = 2.

3. Find the first few terms of the Taylor series for the
function f (x) = 1

3 (2x + x cos x) using power series
operations.



Taylor’s Polynomial

1. Find the first three Taylor’s polynomial for
f (x) = ln x at x = 1.

2. Find the first four Taylor’s polynomial for f (x) = 1
x2

at x = 2.
3. Find the first few terms of the Taylor series for the

function f (x) = 1
3 (2x + x cos x) using power series

operations.



Maclaurin series of some functions

Find the Maclaurin series of the following functions.
1. f (x) = (1 + x)k, k ∈ N.

2. f (x) = sin x
3. f (x) = cos x
4. f (x) = 1

1+x
5. f (x) = ex

Problem
Find the Maclaurin series for the function

f (x) = sin (ex − 1)

up to the term x4.
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More problems

▶ Using Taylor’s theorem, express the polynomial

p(x) = 2x3 + 7x2 + x − 6

in powers of (x − 1).

▶ Obtain the fourth-degree Taylor’s polynomial
approximation to f (x) = e2x about x = 0. Find the
maximum error when 0 ≤ x ≤ 0.5.
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Taylor’s Theorem with Remainder

Write

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·+

+
f (n)(a)

n!
(x − a)n + Rn(x),

where

Rn(x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1,

for some c ∈ (a, x).
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Gamma function

The gamma function is the extension of factorial func-
tion to real numbers.

— Leonhard Euler

The gamma function can be seen as a solution to the
interpolation problem of finding a smooth curve y =
f (x) that connects the points of the factorial sequence
(x, y) = (n, n!) all positive integer values of n.

— Wikipedia



Gamma function

The gamma function is the extension of factorial func-
tion to real numbers.

— Leonhard Euler

The gamma function can be seen as a solution to the
interpolation problem of finding a smooth curve y =
f (x) that connects the points of the factorial sequence
(x, y) = (n, n!) all positive integer values of n.

— Wikipedia



Gamma function

The gamma function is the extension of factorial func-
tion to real numbers.

— Leonhard Euler

The gamma function can be seen as a solution to the
interpolation problem of finding a smooth curve y =
f (x) that connects the points of the factorial sequence
(x, y) = (n, n!) all positive integer values of n.

— Wikipedia



Definition of Gamma function

For any positive real number z, the Gamma function
is defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt.

Properties:
▶ Γ(n + 1) = n! for any n ≥ 0.

▶ Γ
(

1
2

)
=

√
π.

▶ For any n ≥ 0, Γ(n + 1) = nΓ(n).
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Some more computations

1. Suppose we want to find γ
(7

2

)
. We will use the

reduction Γ(n + 1) = nΓ(n).

Γ
(

7
2

)
= Γ

(
5
2
+ 1

)
=

5
2

Γ
(

5
2

)

=
5
2

Γ
(

3
2
+ 1

)

=
5
2
· 3

2
Γ
(

3
2

)

=
5
2
· 3

2
· 1

2
Γ
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1
2
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=

15
8
√
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