### Expansion of functions Engineering Mathematics-I

#### Dr. (PhD) Sachchidanand Prasad

SPNREC, Araria

October 14, 2024

# Today's Goal

### Today's Goal

► Taylor series and Maclaurin series

### Today's Goal

▶ Taylor series and Maclaurin series

Taylor's polynomial

▶ A real *polynomial* in one variable is of the form

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots a_n x^n$$
,

▶ A real *polynomial* in one variable is of the form

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$
,

where  $a_i \in \mathbb{R}$ .

A real *polynomial* in one variable is of the form

 $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ ,

where  $a_i \in \mathbb{R}$ .

► We call

- $a_i$  coefficient of  $x^i$
- $a_0$  constant term or coefficient of  $x^0$
- *n* degree of the polynomial if  $a_n \neq 0$

A real *polynomial* in one variable is of the form

 $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ ,

where  $a_i \in \mathbb{R}$ .



- $a_i$  coefficient of  $x^i$
- $a_0$  constant term or coefficient of  $x^0$
- *n* degree of the polynomial if  $a_n \neq 0$

 A *constant polynomial* is a polynomial with only constant terms.

A real *polynomial* in one variable is of the form

 $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ ,

where  $a_i \in \mathbb{R}$ .



- $a_i$  coefficient of  $x^i$
- $a_0$  constant term or coefficient of  $x^0$
- *n* degree of the polynomial if  $a_n \neq 0$
- A constant polynomial is a polynomial with only constant terms. A zero polynomial is a constant polynomial with constant term zero.



#### $2 = 2 \cdot x^0$ degree = 0 constant polynomial



### $2 = 2 \cdot x^0$ degree = 0 constant polynomial <u>x+1</u> degree = 1 linear polynomial



| $2 = 2 \cdot x^0$ | degree $= 0$ | constant polynomial  |
|-------------------|--------------|----------------------|
| x + 1             | degree $= 1$ | linear polynomial    |
| $2x^2 + x + 1$    | degree $= 2$ | quadratic polynomial |

| $2 = 2 \cdot x^0$ | degree $= 0$ | constant polynomial  |
|-------------------|--------------|----------------------|
| x + 1             | degree $= 1$ | linear polynomial    |
| $2x^2 + x + 1$    | degree $= 2$ | quadratic polynomial |
| $x^3 + 2x - 1$    | degree $= 3$ | cubic polynomial     |

x

| $2 = 2 \cdot x^0$                      | degree $= 0$ | constant polynomial  |
|----------------------------------------|--------------|----------------------|
| x + 1                                  | degree = 1   | linear polynomial    |
| $2x^2 + x + 1$                         | degree $= 2$ | quadratic polynomial |
| $x^3 + 2x - 1$                         | degree = 3   | cubic polynomial     |
| $\frac{1}{6} - x^4 + \frac{3}{4}x + 1$ | degree $= 6$ |                      |

x

| $2 = 2 \cdot x^0$              | degree $= 0$   | constant polynomial  |
|--------------------------------|----------------|----------------------|
| x + 1                          | degree = 1     | linear polynomial    |
| $2x^2 + x + 1$                 | degree = 2     | quadratic polynomial |
| $x^3 + 2x - 1$                 | degree $= 3$   | cubic polynomial     |
| $x^6 - x^4 + \frac{3}{4}x + 1$ | degree $= 6$   |                      |
| $(x-2)^{150}$                  | degree $= 150$ |                      |

### Non-examples



### Non-examples



### Non-examples



We can write the polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

as

#### We can write the polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

as

$$p(x) = \sum_{i=0}^{n} a_i x^i.$$

# Equal polynomials

#### We call two polynomials p(x) and q(x) are equal if

# Equal polynomials

# We call two polynomials p(x) and q(x) are equal if the degree are same

$$p(x) = \sum_{i=0}^{n_1} a_i x^i$$
 and  $q(x) = \sum_{i=0}^{n_2} b_i x^i$ ,

$$p(x) = \sum_{i=0}^{n_1} a_i x^i$$
 and  $q(x) = \sum_{i=0}^{n_2} b_i x^i$ ,

then

p(x) = q(x)

$$p(x) = \sum_{i=0}^{n_1} a_i x^i$$
 and  $q(x) = \sum_{i=0}^{n_2} b_i x^i$ ,

then

$$p(x) = q(x) \iff n_1 = n_2 = n \text{ (say)}$$

$$p(x) = \sum_{i=0}^{n_1} a_i x^i$$
 and  $q(x) = \sum_{i=0}^{n_2} b_i x^i$ ,

then

$$p(x) = q(x) \iff n_1 = n_2 = n \text{ (say)}$$

and

$$a_i = b_i$$
 for  $i = 0, 1, 2, ..., n$ .

### Taylor's Expansion

If *f* has derivatives of all orders at x = a, then the *Taylor* series for the function *f* at *a* is

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

In the summation notation we can write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

**Problem** *Find the Taylor's expansion of the function*  $e^x$  *around* x = 0.

**Solution:** Let us write  $f(x) = e^x$ . According to the Taylor's expansion,

**Problem** Find the Taylor's expansion of the function  $e^x$  around x = 0.

**Solution:** Let us write  $f(x) = e^x$ . According to the Taylor's expansion,

$$e^{x} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}.$$

**Problem** *Find the Taylor's expansion of the function*  $e^x$  *around* x = 0.

**Solution:** Let us write  $f(x) = e^x$ . According to the Taylor's expansion,

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

**Problem** *Find the Taylor's expansion of the function*  $e^x$  *around* x = 0.

**Solution:** Let us write  $f(x) = e^x$ . According to the Taylor's expansion,

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

$$n = 0$$
  $f(0) = e^0 = 1$   $\frac{1}{0!}x^0 = 1$ 

**Problem** *Find the Taylor's expansion of the function*  $e^x$  *around* x = 0.

**Solution:** Let us write  $f(x) = e^x$ . According to the Taylor's expansion,

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

$$n = 0$$
  $f(0) = e^0 = 1$   $\frac{1}{0!}x^0 = 1$ 

**Problem** *Find the Taylor's expansion of the function*  $e^x$  *around* x = 0.

**Solution:** Let us write  $f(x) = e^x$ . According to the Taylor's expansion,

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

$$n = 0 \quad f(0) = e^{0} = 1 \quad \frac{1}{0!}x^{0} = 1$$
$$n = 1 \quad f^{(1)}(0) = e^{0} = 1 \quad \frac{1}{1!}x = x$$

$$n = 2$$
  $f^{(2)}(0) = e^0 = 1$   $\frac{1}{2!}x^2 = \frac{x^2}{2}$ 

$$n = 2 \quad f^{(2)}(0) = e^0 = 1 \quad \frac{1}{2!}x^2 = \frac{x^2}{2}$$
$$n = 3 \quad f^{(3)}(0) = e^0 = 1 \quad \frac{1}{3!}x^3 = \frac{x^3}{6}$$

$$n = 2 \quad f^{(2)}(0) = e^{0} = 1 \quad \frac{1}{2!}x^{2} = \frac{x^{2}}{2}$$
$$n = 3 \quad f^{(3)}(0) = e^{0} = 1 \quad \frac{1}{3!}x^{3} = \frac{x^{3}}{6}$$
$$n = 4 \quad f^{(4)}(0) = e^{0} = 1 \quad \frac{1}{4!}x^{4} = \frac{x^{4}}{24}$$

$$n = 2 \quad f^{(2)}(0) = e^{0} = 1 \quad \frac{1}{2!}x^{2} = \frac{x^{2}}{2}$$
$$n = 3 \quad f^{(3)}(0) = e^{0} = 1 \quad \frac{1}{3!}x^{3} = \frac{x^{3}}{6}$$
$$n = 4 \quad f^{(4)}(0) = e^{0} = 1 \quad \frac{1}{4!}x^{4} = \frac{x^{4}}{24}$$

Thus,

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$n = 2 \quad f^{(2)}(0) = e^{0} = 1 \quad \frac{1}{2!}x^{2} = \frac{x^{2}}{2}$$
$$n = 3 \quad f^{(3)}(0) = e^{0} = 1 \quad \frac{1}{3!}x^{3} = \frac{x^{3}}{6}$$
$$n = 4 \quad f^{(4)}(0) = e^{0} = 1 \quad \frac{1}{4!}x^{4} = \frac{x^{4}}{24}$$

Thus,

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$=\sum_{n=0}^{\infty}\frac{x^n}{n!}.$$

# In the Taylor's series, if we take a = 0, then the corresponding series is called *Maclaurin Series*.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

### Taylor's Polynomial

1. Find the first three Taylor's polynomial for  $f(x) = \ln x$  at x = 1.

### Taylor's Polynomial

- 1. Find the first three Taylor's polynomial for  $f(x) = \ln x$  at x = 1.
- 2. Find the first four Taylor's polynomial for  $f(x) = \frac{1}{x^2}$  at x = 2.

- 1. Find the first three Taylor's polynomial for  $f(x) = \ln x$  at x = 1.
- 2. Find the first four Taylor's polynomial for  $f(x) = \frac{1}{x^2}$  at x = 2.
- 3. Find the first few terms of the Taylor series for the function  $f(x) = \frac{1}{3} (2x + x \cos x)$  using power series operations.

Find the Maclaurin series of the following functions. 1.  $f(x) = (1 + x)^k$ ,  $k \in \mathbb{N}$ .

Find the Maclaurin series of the following functions. 1.  $f(x) = (1 + x)^k$ ,  $k \in \mathbb{N}$ . 2.  $f(x) = \sin x$ 

Find the Maclaurin series of the following functions.

1. 
$$f(x) = (1+x)^k, k \in \mathbb{N}$$
.

- 2.  $f(x) = \sin x$
- 3.  $f(x) = \cos x$

Find the Maclaurin series of the following functions.

1. 
$$f(x) = (1 + x)^k, k \in \mathbb{N}$$
.  
2.  $f(x) = \sin x$   
3.  $f(x) = \cos x$   
4.  $f(x) = \frac{1}{1+x}$ 

Find the Maclaurin series of the following functions.

1. 
$$f(x) = (1 + x)^k, k \in \mathbb{N}$$
  
2.  $f(x) = \sin x$   
3.  $f(x) = \cos x$   
4.  $f(x) = \frac{1}{1+x}$   
5.  $f(x) = e^x$ 

Find the Maclaurin series of the following functions.

1. 
$$f(x) = (1 + x)^k, k \in \mathbb{R}$$
  
2.  $f(x) = \sin x$   
3.  $f(x) = \cos x$   
4.  $f(x) = \frac{1}{1+x}$   
5.  $f(x) = e^x$ 

**Problem** *Find the Maclaurin series for the function* 

 $\overline{f(x)} = \sin\left(e^x - 1\right)$ 

up to the term  $x^4$ .

► Using Taylor's theorem, express the polynomial  $p(x) = 2x^3 + 7x^2 + x - 6$ in powers of (x - 1). Using Taylor's theorem, express the polynomial

$$p(x) = 2x^3 + 7x^2 + x - 6$$

in powers of (x - 1).

▶ Obtain the fourth-degree Taylor's polynomial approximation to  $f(x) = e^{2x}$  about x = 0. Find the maximum error when  $0 \le x \le 0.5$ .

### Taylor's Theorem with Remainder

#### Write

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

### Taylor's Theorem with Remainder

#### Write

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

#### where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1},$$

for some  $c \in (a, x)$ .

### Gamma function

*The gamma function is the extension of factorial function to real numbers.* 

— Leonhard Euler

*The gamma function is the extension of factorial function to real numbers.* 

— Leonhard Euler

The gamma function can be seen as a solution to the interpolation problem of finding a smooth curve y = f(x) that connects the points of the factorial sequence (x,y) = (n,n!) all positive integer values of n. — Wikipedia

*For any positive real number z, the Gamma function is defined as* 

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \mathrm{d}t.$$

For any positive real number *z*, the Gamma function is defined as

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \mathrm{d}t.$$

**Properties:** 

• 
$$\Gamma(n+1) = n!$$
 for any  $n \ge 0$ .

For any positive real number *z*, the Gamma function is defined as

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \mathrm{d}t.$$

### Properties: $\Gamma(n+1) = n!$ for any $n \ge 0$ . $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ .

For any positive real number *z*, the Gamma function is defined as

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \mathrm{d}t.$$

Properties:

$$\Gamma\left(\frac{7}{2}\right) = \Gamma\left(\frac{5}{2} + 1\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right)$$

$$\Gamma\left(\frac{7}{2}\right) = \Gamma\left(\frac{5}{2}+1\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right)$$
$$= \frac{5}{2}\Gamma\left(\frac{3}{2}+1\right)$$

$$\Gamma\left(\frac{7}{2}\right) = \Gamma\left(\frac{5}{2}+1\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right)$$
$$= \frac{5}{2}\Gamma\left(\frac{3}{2}+1\right)$$
$$= \frac{5}{2}\cdot\frac{3}{2}\Gamma\left(\frac{3}{2}\right)$$

$$\Gamma\left(\frac{7}{2}\right) = \Gamma\left(\frac{5}{2}+1\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right)$$
$$= \frac{5}{2}\Gamma\left(\frac{3}{2}+1\right)$$
$$= \frac{5}{2} \cdot \frac{3}{2}\Gamma\left(\frac{3}{2}\right)$$
$$= \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$

$$\begin{aligned} \Gamma\left(\frac{7}{2}\right) &= \Gamma\left(\frac{5}{2}+1\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right) \\ &= \frac{5}{2}\Gamma\left(\frac{3}{2}+1\right) \\ &= \frac{5}{2}\cdot\frac{3}{2}\Gamma\left(\frac{3}{2}\right) \\ &= \frac{5}{2}\cdot\frac{3}{2}\cdot\frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{15}{8}\sqrt{\pi} \end{aligned}$$