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▶ What is derivative?

▶ Geometric meaning of derivative
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▶ Rolle’s theorem
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What is derivative?

Suppose we are given two points (x1, y1) and (x2, y2) on
the line. Then the slope of the line is calculated by

m =
∆y
∆x

=
y2 − y1

x2 − x1
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Average Change

[1] If we are given with a curve with two points, then the
average rate of change is calculated by the slope of the
secant line

[2] (the line which passes through the two points on
the curve).
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▶ The slope of the secant line is also referred to as the
average rate of change of f over the interval [x, x + h].

▶ Thus, average rate of change of f over the interval
[x, x + h] will be

f (x + h)− f (x)
h

.

▶ What will happen if h “tends” to 0?
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Tangent Line

As h tends to 0 the points x and x + h coincide

and hence
the secant line tends to the tangent line at x. See the
animation. Thus,

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Slope of the tangent line is known as Instantaneous Rate of
Change



Tangent Line

As h tends to 0 the points x and x + h coincide and hence
the secant line tends to the tangent line at x.

See the
animation. Thus,

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Slope of the tangent line is known as Instantaneous Rate of
Change



Tangent Line

As h tends to 0 the points x and x + h coincide and hence
the secant line tends to the tangent line at x. See the
animation.

Thus,

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Slope of the tangent line is known as Instantaneous Rate of
Change



Tangent Line

As h tends to 0 the points x and x + h coincide and hence
the secant line tends to the tangent line at x. See the
animation. Thus,

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Slope of the tangent line is known as Instantaneous Rate of
Change



Examples

Let us check the derivative of f (x) = x2 is 2x.

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + h2 + 2xh − x2

h

= lim
h→0

h2 + 2hx
h

= lim
h→0

(h + 2x)

= 2x.
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Example Cont...

Check the differentiability of the function f (x) = |x|.

Note that for any x ∈ R \ {0}, the limit

lim
h→0

f (x + h)− f (x)
h

exists. For x = 0, we have

lim
h→0

f (0 + h)− f (0)
h

= lim
h→0

|h|
h

.

The left hand limit is −1 and the right hand limit is 1,
hence the limit does not exist. Thus, the function is not
differentiable at x = 0.
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Rolle’s Theorem

Suppose f is defined on [a, b] such that

▶ f is continuous on [a, b]
▶ f is differentiable on (a, b)
▶ f (a) = f (b)

Then, there exists c ∈ (a, b) such that

f ′(c) = 0.
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Problems on Rolle’s Theorem

Problem
For the function f (x) = x

(
x2 − 1

)
test for the applicability

of Rolle’s theorem in the interval [−1, 1] and hence find c
such that −1 < c < 1.



Problem cont...

Solution
Given that the function is

f (x) = x
(

x2 − 1
)

.

We have
1. f is continuous on [−1, 1],

2. f is differentiable on (−1, 1) and
3. f (−1) = 0 = f (1).

Since f satisfies the hypothesis of Rolle’s theorem, there exists
c ∈ (−1, 1) such that f ′(c) = 0. That is,
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Solution cont...

f ′(c) = 0 =⇒ 3c2 − 1 = 0

=⇒ c = ±
√

1
3

.
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Problem 2

Problem
Verify the Rolle’s theorem for

f (x) =
sin x

ex , in [0, π].



Solution

▶ Since sin x and ex is continuous and ex is not zero in
the interval [0, π], so f (x) = sin x

ex is continuous on
[0, π].

▶ Since sin x and ex is differentiable and ex is not zero
in the interval (0, π), so f (x) = sin x

ex is differentiable
on (0, π).

▶ Since

f (0) =
sin 0

e0 = 0 and f (π) =
sin π

eπ
= 0.

So, Rolle’s theorem is applicable for the given
function and hence there exists c ∈ (0, π) such that
f ′(c) = 0.



Problem 3

Problem
It is given that the Rolle’s theorem holds for the function

f (x) = x3 + bx2 + cx, 1 ≤ x ≤ 2

at the point x = 4
3 . Find the value of b and c.



Solution

▶ Since Rolle’s theorem is applicable, so

f (1) = f (2) =⇒ 1 + b + c = 8 + 4b + 2c
=⇒ 3b + c = −7.

Also,

f ′
(

4
3

)
= 0 =⇒ 16

3
+

8b
3

+ c = 0

=⇒ 8b + 3c = −16.

▶ Solve the two equations to find b and c.



Lagrange’s Mean Value Theorem

Suppose f is defined on [a, b] such that

▶ f is continuous on [a, b]
▶ f is differentiable on (a, b)

Then, there exists c ∈ (a, b) such that

f (b)− f (a)
b − a

= f ′(c).

Proof.
Take

g(x) = f (x)− f (a)− f (b)− f (a)
b − a

(x − a).
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Problem-1

Problem
Verify the Lagrange’s mean value theorem for the function

f (x) = x(x − 1)(x − 2), a = 0 and b =
1
2

.

Also find c.



Solution

▶ Since f (x) is a polynomial it is continuous and
differentiable.

▶ By the L.M.V.T there exists c ∈
(

0, 1
2

)
such that

f ′(c) =
f (b)− f (a)

b − a
.

▶ Note that

f (x) = x3 − 3x2 + 2x =⇒ f ′(x) = 3x2 − 6x + 2.

Thus,

f ′(c) =
f (b)− f (a)

b − a
=⇒ 3c2 − 6c + 2 =

3
8
1
2

Solve for c.



Problem-2

Problem
Verify the Lagrange’s mean value theorem for the function
given below and find c

f (x) = log x, a = 1 and b = e.



Cauchy’s Mean Value Theorem

Let f and g be two functions defined on [a, b] such that
▶ f and g are continuous on [a, b]

▶ f and g are differentiable on (a, b) and
▶ g′(x) ̸= 0 for any x ∈ (a, b).

Then there exists c ∈ (a, b) such that

f (b)− f (a)
g(b)− g(a)

=
f ′(c)
g′(c)

.
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