Complex Variables: Homework #4

Based on analytic functions

Dr. Sachchidanand Prasad

Important Tips

We recall that if a function $f(z)=u(x,y)+\iota v(x,y)$ is analytic at $z_0=x_0+\iota y_0$, then it must satisfy the Cauchy-Riemann equaitons at z_0 .

$$u_x = v_y$$
 and $u_y = -v_x$.

We can also write the Cauchy-Riemann equations in the polar form. For example, consider the function

$$f(z) = z^2 + 3z.$$

If we replace $z = x + \iota y$, we get

$$f(z) = (x^2 - y^2 + 3x) + \iota(2xy + 3y).$$

Thus,

$$u(x,y) = x^2 - y^2 + 3x$$
 and $v(x,y) = 2xy + 3y$.

Similarly, if we take $z = r(\cos \theta + \iota \sin \theta)$, then can write the function we can write $f(z) = u(r, \theta) + \iota v(r, \theta)$.

$$f(z) = z^2 + 3z = (r(\cos\theta + \iota\sin\theta))^2 + 3(r(\cos\theta + \iota\sin\theta))$$
$$= r(\cos^2\theta - \sin^2\theta + 2\iota\cos\theta\sin\theta) + 3r\cos\theta + \iota 3r\sin\theta$$
$$= r(\cos 2\theta + \iota\sin 2\theta) + 3r\cos\theta + \iota 3r\sin\theta$$
$$= r(\cos 2\theta + 3r\cos\theta) + \iota(r(\sin 2\theta + 3\sin\theta)).$$

Thus,

$$u(r, \theta) = r(\cos 2\theta + 3r \cos \theta)$$
 and $v(r, \theta) = r(\sin 2\theta + 3\sin \theta)$.

The Cauchy-Riemann equations in the polar form is given by

$$u_r = -\frac{1}{r}v_{\theta}$$
 and $v_r = -\frac{1}{r}u_{\theta}$.

Theory

We recall some of the important complex functions.

1. Exponential funciton

$$e^z = e^{x+\iota\theta} = e^x(\cos\theta + \iota\sin\theta)$$

2. Trigonometric functions

$$\cos z = \frac{e^{\iota z} + e^{-\iota z}}{2}, \quad \sin z = \frac{e^{\iota z} - e^{-\iota z}}{2\iota}$$

Problem 1

Check whether the following functions satisfy the Cauchy-Riemann equations.

- 2. $f(z)=e^{-2x}(\cos 2y-\iota\sin 2y)$ 3. $f(z)=e^x(\cos y-\iota\sin y)$
- 4. $f(z) = \text{Re}(z^2) \iota \text{Im}(z^2)$
- 5. $f(z) = \frac{1}{z z^5}$
- 6. $f(z) = \frac{\iota}{z^8}$ 7. $f(z) = \frac{3\pi^2}{z^3 + 4\pi^2 z}$.

To make easier, use the polar form of the Cauchy-Riemann equations in the last three problems.

Problem 2

Find the value of c_1 and c_2 such that the function

$$f(z) = x^2 + c_1 y^2 - 2xy + \iota \big(c_2 x^2 - y^2 + 2xy \big)$$

is analytic.

Problem 3

Find k such that the function f(z) expressed in polar coordinates as

$$f(z) = r^2 \cos 2\theta + \iota r^2 k\theta$$

is analytic.