GATE 2025: Solution to Homework #1

Based on Functions

Dr. Sachchidanand Prasad

Problem 1

Find the domain and range of each functions.

1.
$$f(x) = 1 + x^2$$

2. $g(t) = \frac{2}{t^2 - 16}$
3. $h(s) = \sqrt{s^2 - 3s}$
4. $p(x) = \frac{4}{3-x}$
5. $s(x) = \sqrt{x^2 + 1}$

Solution

1. The given function is $f(x) = 1 + x^2$. Since the function is defined for all $x \in \mathbb{R}$, the domain of the function is \mathbb{R} .

Let us see what will be range of this function. For any $x \in \mathbb{R}$,

 $0 \le x^2 < \infty \Rightarrow 1 \le 1 + x^2 < \infty.$

Thus, the range of the function will be $[1, \infty)$. This range can be also be found as follows. Let $y \in \mathbb{R}$ and y is in the range of f. Then there exists $x \in \mathbb{R}$ such that

$$\begin{split} f(x) &= y \Rightarrow 1 + x^2 = y \\ &\Rightarrow x^2 = y - 1 \\ &\Rightarrow x = \pm \sqrt{y - 1} \end{split}$$

The above expression is well defined if $y - 1 \ge 0$ which implies $y \ge 1$. Thus, the range will be $[1, \infty)$.

2. The given function is $g(t) = \frac{2}{t^2 - 16}$. This function will be well-defined if the denominator is nonzero. So, we must have

$$t^2 - 16 \neq 0 \Rightarrow (t - 4)(t + 4) \neq 0 \Rightarrow t \neq \pm 4.$$

Thus, the domian of the given function will be

$$\text{Domain} = \mathbb{R} - \{\pm 4\} = (-\infty, -4) \cup (-4, 4) \cup (4, \infty).$$

Now we will find the range of the function. If y is in the range of g, then there exists $t \in D(g)$ (D(g) = domain of g) such that

$$\begin{split} g(t) &= y \Rightarrow \frac{2}{t^2 - 16} = y \qquad \Rightarrow 2 = t^2 y - 16y \\ &\Rightarrow t^2 y = 2 + 16y \qquad \Rightarrow t^2 = \frac{2 + 16y}{y} \\ &\Rightarrow t = \pm \sqrt{\frac{2 + 16y}{y}}. \end{split}$$

The above expression is well defined if

$$\begin{aligned} \frac{2+16y}{y} &\geq 0 \quad \text{and} \quad y \neq 0 \\ \Rightarrow \begin{cases} 2+16y \geq 0 \text{ if } y > 0 \\ 2+16y \leq 0 \text{ if } y < 0 \end{cases} \quad \text{and} \quad y \neq 0 \\ \Rightarrow \begin{cases} y \geq -\frac{1}{8} \text{ if } y > 0 \\ y \leq -\frac{1}{8} \text{ if } y < 0 \end{cases} \quad \text{and} \quad y \neq 0 \\ \Rightarrow \begin{cases} y > 0 \\ y \leq -\frac{1}{8}. \end{cases} \end{aligned}$$

Thus, the range of the given function will be

$$R(g) = \left(-\infty, -\frac{1}{8}\right] \cup (0, \infty).$$

3. Te given function is $\sqrt{s^2 - 3s}$. For the domian of the function, we need

$$s^2 - 3s \ge 0 \Rightarrow s(s - 3) \ge 0.$$

This is a product of two numbers, namely s and s - 3. We break our anyalsis in three intervals shown below.

$$s < 0 \text{ and } s - 3 < 0$$

 $s > 0 \text{ and } s - 3 < 0$
 $s > 0 \text{ and } s - 3 < 0$
 $s > 0 \text{ and } s - 3 < 0$

In the first and third intervals the sign of s(s-3) is positve whereas in the second interval the sign is negative. Thus, the domian will be

$$D(h) = (-\infty, 0] \cup [3, \infty).$$

To find the range, we first note that on the domain $s^2 - 3s \ge 0$. Also, as s approaches to infinity, $s^2 - 3s$ also approaches to infinity. Thus,

$$0 \leq s^2 - 3s < \infty \Rightarrow 0 \leq \sqrt{s^2 - 3s} < \infty.$$

Thus, the range of the function will be $[0, \infty)$. Note that we can also solve this problem similar to the earlier problems.

4. The given function is $p(x) = \frac{4}{3-x}$. The function is defined everywhere except when 3 - x = 0. So, the domain of the function is $\mathbb{R} - \{3\}$. For the range, we observe that if $y \in \mathbb{R}$ such that

$$y = \frac{4}{3-x} \Rightarrow 3y - xy = 4 \Rightarrow x = \frac{3y-4}{y},$$

which is defined except at y = 0. Thus, the range will be

$$R(p) = \mathbb{R} - \{0\}$$

5. The given function is $s(x) = \sqrt{x^2 + 1}$. Since for any $x \in \mathbb{R}$, the value of $x^2 + 1 > 0$. Thus, the domain of the given function will be \mathbb{R} . For the range, we observe that

$$x^2 + 1 \ge 1 \Rightarrow \sqrt{x^2 + 1} \ge 1.$$

Thus, the range will be $[1, \infty)$. This can also be solved similar to the earlier problems. Let $y \in \mathbb{R}$ be in the range. It is clear that $y \ge 1$. So, there exists $x \in \mathbb{R}$ such that

$$\begin{split} s(x) &= y \Rightarrow \sqrt{x^2 + 1} = y \Rightarrow x^2 + 1 = y^2 \\ &\Rightarrow x = \pm \sqrt{y^2 - 1}. \end{split}$$

The above expression is well defined if $y^2 - 1 \ge 0$ which implies $(y - 1)(y + 1) \ge 0$. Similar to the third part of this problem, we will get $y \in (-\infty, -1] \cup [1, \infty)$. Since $y \ge 1$, the range will be

 $R(s) = [1,\infty).$

Problem 2

Solution

It is clear that the first and third one can not be a graph of a function of x as the shown vertical line intersects the graph more than once. The other two graphs are the graphs of some function of x.

Problem 3

Express the area and perimeter of an equilateral triangle as a function of the triangle's side length x.

Solution

Since the side length of the equilateral triangle is x, the perimeter function will be

$$P:(0,\infty)\to (0,\infty), \quad p(x)=3x.$$

Similarly, the area function will be

$$A:(0,\infty)\to (0,\infty), \quad A(x)=\frac{\sqrt{3}}{4}x^2.$$

Problem 4

Consider the point (x, y) lying on the graph of the line 2x + 4y = 5. Let ℓ be the distance from the point (x, y) to the origin (0, 0). Write ℓ as a function of x.

Solution

Take any point (x, y) on the line 2x + 4y = 5. So, we can write

$$y = \frac{5 - 2x}{4}.$$

Thus, the point will be $\left(x, \frac{5-2x}{4}\right)$. The distance to this point to the origin will be

Problem 5

Find the domain of each functions. 1. $f(x) = \frac{x+3}{4-\sqrt{x^2-9}}$. 2. $g(t) = \frac{t}{|t|}$.

3.
$$h(x) = \sqrt{1 - x^2}$$

4. $s(t) = \sqrt{-t}$.

Solution

1. The given function is

$$f(x) = \frac{x+3}{4 - \sqrt{x^2 - 9}}.$$

The above function is defined everywhere except when

$$\begin{array}{l} 4 - \sqrt{x^2 - 9} = 0 \quad \text{and} \quad x^2 - 9 < 0 \\ \Rightarrow x^2 - 9 = 16 \quad \text{and} \quad (x - 3)(x + 3) < 0 \\ \Rightarrow x^2 - 25 = 0 \quad \text{and} \quad x \in (-3, 3) \\ \Rightarrow (x - 5)(x + 5) = 0 \quad \text{and} \quad x \in (-3, 3) \\ \Rightarrow x = \pm 5 \quad \text{and} \quad x \in (-3, 3). \end{array}$$

Thus, the domian of the given function will be

$$D(f) = \mathbb{R} - [(-3,3) \cup \{-5,5\}].$$

2. The given function is

$$g(t) = \frac{t}{|t|}.$$

This function is defined everywhere except when |t| = 0, that is, t = 0. Thus, the domain will be

$$D(g) = \mathbb{R} - \{0\}.$$

3. The given function is

$$h(x) = \sqrt{1 - x^2}.$$

The above function will be defined if

$$1-x^2 \ge 0 \Rightarrow (1-x)(1+x) \ge 0 \Rightarrow x \in [-1,1].$$

Thus the domian will be

$$D(h) = [-1, 1].$$

4. The given function is

 $s(t)\sqrt{-t}$.

Again, this function will be defined if

$$-t \ge 0 \Rightarrow t \le 0 \Rightarrow t \in (-\infty, 0].$$

Thus, the domian will be

 $D(s) = (-\infty, 0].$

Problem 6

How many points are there in the range of a constant function $f : \mathbb{R} \to \mathbb{R}$?

Solution

Since, a constant function can only take one value, then range contains excatly one point. Thus, there is only one point in the range set.

Problem 7

Solution

- The first function is increasing (**not** strictly increasing).
- The second function is neither increasing nor decreasing.
- The third function is decreasing (**not** strictly decreasing).
- In the last problem, the function f is strictly increasing whereas the function g is strictly decreasing.

Problem 8

Write the function after the given transformations.

1. $f(x) = \sqrt{x}$.

- ► Upward 4 units.
- ► Right side 10 units.
- 2. $f(x) = \sin x + \tan x + e^{x^2}$.
 - ► Towards left 20 units.
 - ► Downward 5 units.
 - ▶ Towards right 20 units.
 - Upward 10 units.

Solution

- 1. $f(x) = \sqrt{x}$.
 - After first transformation: $F_1(x) = \sqrt{x} + 4$.
 - After second transformation: $F_2(x) = \sqrt{x 10} + 4$.
- 2. $f(x) = \sin x + \tan x + e^{x^2}$.
 - After first transformation: $F_1(x) = f(x+20)$.
 - After second transformation: $F_2(x) = f(x+20) 5$.
 - + After third transformation: $F_3(x) = f(x + 20 20) 5 = f(x) 5$.
 - + After fourth transformation: $F_4(x)=f(x)-5+20=f(x)+15.$

Problem 9

The accompanying figure shows the graph of $y = -x^2$ shifted to two new positions. Write equations for the new graphs.

Solution

1.
$$f(x) = -x^2$$

• Position (a):
$$-(x+7)^2$$

• Position (b):
$$-(x-3)^2$$
.

2.
$$f(x) = x^2$$

• Position (a):
$$x^2 + 3$$
.

• Position (b) =
$$x^2 - 1$$
.