Problem: Find the upper and lower limits or the sequence $\{ s_n \}$ defined by
\[
s_1 = 0; \quad s_{2m} = \frac{s_{2m-1} }{2}; \quad s_{2m+1} = \frac{1}{2}+ s_{2m} .
\]
Solution: Let us write a few terms of the sequence.
\begin{align*}
s_1 & = 0 & s_2 & = 0 \\
s_3 & = \frac{1}{2} & s_4 & = \frac{1}{2^2} \\
s_5 & = \frac{1}{2} + \frac{1}{2^2}, & s_6 & = \frac{1}{2^2} + \frac{1}{2^3} \\
s_7 & = \frac{1}{2} +\frac{1}{2^2} + \frac{1}{2^3}, & s_8 & = \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} \\
& \vdots & & \vdots \\
s_{2m+1} & = \sum_{i= 1}^m \frac{1}{2^i} & s_{2m} & = s_{2m + 1} - \frac{1}{2} \\
& = \frac{\frac{1}{2} \left( 1 - \frac{1}{2^m} \right) }{1 - \frac{1}{2}} = 1 - \frac{1}{2^m}, & s_{2m} & = \frac{1}{2}
- \frac{1}{2^m}.
\end{align*}
Since $\displaystyle \lim_{m \to \infty} \frac{1}{2^m} = 0$, the sequence $\{ s_n \} $ has two limit points, namely, $\{
1, \frac{1}{2} \} $. Hence, we have
\[
\limsup_{n \to \infty} s_n = 1 \quad \text{ and } \quad \liminf_{n \to \infty} s_n = \frac{1}{2}.
\]