04-06-2025

Problem: Let $G$ be the set of all mappings \[ T_{a,b}: \mathbb{R} \to \mathbb{R} , \quad T_{a,b}(r) = ar + b \] where $a,b\in \mathbb{R} $ and $a \neq 0$. Let $H \subseteq G$, defined as \[ H = \left\{ T_{a,b} \in G: a \in \mathbb{Q} \text{ and } b \in \mathbb{R} \right\}. \] Show that $H$ is a nonabelian group under the composition operation.

Comments