Use the elementary row operations to reduce the coefficient matrix and then solve the reduced system which is equivalent to the given system of equations.
Solution: We will use elementary row operations on the coefficient matrix to solve the problem. Note that the coefficient matrix is
\begin{align*}
A = \begin{bmatrix}
1 - \iota & -\iota \\
2 & 1 - \iota \\
\end{bmatrix}.
\end{align*}
Using elementary row operations, we have
\begin{align*}
\begin{bmatrix}
1 - \iota & -\iota \\
2 & 1 - \iota \\
\end{bmatrix} & \xrightarrow{R_1 \leftrightarrow R_2}
\begin{bmatrix}
2 & 1 - \iota \\
1 - \iota & -\iota \\
\end{bmatrix} \\
& \xrightarrow{R_1 \rightarrow \frac{R_1}{2}}
\begin{bmatrix}
1 & \frac{1}{2} - \frac{\iota}{2} \\
1 - \iota & -\iota \\
\end{bmatrix} \\
& \xrightarrow{R_2 \rightarrow R_2 - (1 - \iota ) R_1}
\begin{bmatrix}
1 & \frac{1}{2} - \frac{\iota}{2}\\
0 & 0 \\
\end{bmatrix} .
\end{align*}
Thus, the given system is equivalent to the following equation
\begin{align*}
x_1 + x_2 \left( \frac{1}{2} - \frac{\iota}{2} \right) = 0 \implies x_1 = -x_2 \left( \frac{1}{2} - \frac{\iota}{2} \right).
\end{align*}
Therefore, the solution set is
\[
\mathcal{S} = \left\{ x_1 = (\iota - 1) \alpha , x_2 = 2\alpha : \alpha \in \mathbb{C} \right\} .
\]