A general equation of a circular cone of height $h$ and base radius $r$ oriented along the $z$-axis with vertex pointing up is given by
\begin{equation*}
x^2 + y^2 = (z- z_0)^2 \tan^2 \theta,
\end{equation*}
where $\tan \theta = \frac{r}{h}$.
Solution: Recall that a general equation of a circular cone of height $h$ and base radius $r$ oriented along the $z$-axis with vertex pointing up is given by
\begin{equation}\label{eq:30May2025-1}
x^2 + y^2 = (z- z_0)^2 \tan^2 \theta,
\end{equation}
where $\tan \theta = \frac{r}{h}$. To determine the corresponding partial differential equation, we need to eliminate $z_0$ and $\theta $.
Take the partial derivative of \eqref{eq:30May2025-1} with respect to $x$ and $y$,
\begin{align}
2x = 2(z - z_0) \frac{\partial z}{\partial x} \tan ^2 \theta & \implies x = (z - z_0) \frac{\partial z}{\partial x} \tan ^2 \theta \label{eq:30May2025-2} \\
2y = 2(z - z_0) \frac{\partial z}{\partial y} \tan ^2 \theta & \implies y = (z - z_0) \frac{\partial z}{\partial y} \tan ^2 \theta. \label{eq:30May2025-3}
\end{align}
Multiplying \eqref{eq:30May2025-2} by $y$ and \eqref{eq:30May2025-3} by x gives,
\begin{align*}
xy & = y(z-z_0)\frac{\partial z}{\partial x} \tan ^2 \theta \quad \text{ and } \\
xy & = x(z-z_0)\frac{\partial z}{\partial y} \tan ^2 \theta.
\end{align*}
This implies,
\begin{align*}
& y(z-z_0)\frac{\partial z}{\partial x} \tan ^2 \theta = x(z-z_0)\frac{\partial z}{\partial y} \tan ^2 \theta \\
\implies & y \frac{\partial z}{\partial x} = x \frac{\partial z}{\partial y} \implies y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0.
\end{align*}
Thus, the required partial differential equation will be
\[
\textcolor{blue}{
\boxed{
y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0
}
}
\]