27-05-2025

Problem: Suppose that $z = x + \iota y$ and define a function \[ f(z) = \begin{cases} \frac{x^2 - y^2 - 2xy \iota }{x + \iota y}, &\text{ if } z \neq 0 ;\\ 0, &\text{ if } \text{ otherwise}. \end{cases} \] Show that $f$ satisfies the Cauchy-Riemann equations at $z = 0$, but it is not differentiable at $z = 0$.

Comments