Problem: Let the system of equations
\begin{align*}
x + 5y - z & = 1 \\
4x + 3y - 3z & = 7 \\
24 x + y + \lambda z & = \mu ,
\end{align*}
where $\lambda ,\mu \in \mathbb{R} $, have infinitely many solutions. Then find the number of the solution of system if $x,y,z$ are integers and satisfy $7 \leq x + y + z \leq 77$.
The system will have infinitely many solutions if the rank of the coefficient matrix is same as the rank of the augmented matrix.
Solution: The given system of equation is
\begin{equation}\label{eq:25May2025-1}
\begin{gathered}
x + 5y - z = 1 \\
4x + 3y - 3z = 7 \\
24 x + y + \lambda z = \mu.
\end{gathered}
\end{equation}
The system \eqref{eq:25May2025-1} has infinitely many solutions, so the rank of the coefficient matrix must be less than $3$ and it should be equal to that of augmented matrix. Let us do the row reduction. The augmented matrix is given by
\begin{align*}
\begin{bmatrix}
1 & 5 & -1 & 1 \\
4 & 3 & -3 & 7 \\
24 & 1 & \lambda & \mu \\
\end{bmatrix}
& \xrightarrow[R_3 \rightarrow R_3 - 24 R_1]{R_2 \rightarrow R_2 - 4R_1}
\begin{bmatrix}
1 & 5 & -1 & 1 \\
0 & -17 & 1 & 3 \\
0 & -119 & \lambda +24 & \mu -24 \\
\end{bmatrix} \\[2ex]
& \xrightarrow{R_2 \leftrightarrow - R_2}
\begin{bmatrix}
1 & 5 & -1 & 1 \\
0 & 17 & -1 & -3 \\
0 & -119 & \lambda +24 & \mu -24 \\
\end{bmatrix} \\[2ex]
& \xrightarrow{R_3 \rightarrow R_3 - + 7 R_2}
\begin{bmatrix}
1 & 5 & -1 & 1 \\
0 & 17 & -1 & -3 \\
0 & 0 & \lambda + 17 & \mu - 27 \\
\end{bmatrix}.
\end{align*}
In order to have infinitely many solutions, we must have
\[
\lambda + 17 = 0 \text{ and } \mu - 27 = 0 \implies \lambda = -17 \text{ and } \mu =27.
\]
Therefore the solution is
\begin{align*}
z = 3 + 17y \text{ and } x = 1 + z - 5y = 4 + 12y.
\end{align*}
Hence, the set of solution is
\begin{align*}
\mathcal{S} =
\left\{\begin{bmatrix}
4 + 12y \\
y \\
3 + 17y \\
\end{bmatrix} : y \in \mathbb{R} \right\} .
\end{align*}
Now we will work on the restrictive condition, that is integral solutions with
\begin{align*}
7 \leq x + y + z \leq 77 & \implies 7 \leq 7 + 30y \leq 77 \\
& \implies 0 \leq 30 y \leq 70 \\
& \implies 0 \leq y \leq \frac{7}{3} = 2\frac{1}{3}.
\end{align*}
Therefore, the number of integral solutions with $7 \leq x + y + z \leq 77$ is $3$.