Problem: Let $\mathcal{C} [-2\pi , 2\pi ]$ be the vector space of all continuous functions defined on the interval $[-2\pi , 2\pi ]$. Prove or disprove that the set
\[
\mathcal{F} = \{ \sin ^2x, \cos ^2x \}
\]
is linearly independent in $\mathcal{C} [-2\pi , 2\pi ]$.