07-04-2025

Problem: Consider the function $f: \mathbb{R} ^2 \to \mathbb{R} ^2$ defined by \[ f(x,y)= \begin{cases} 1, &\text{ if } xy = 0 ;\\ 0, &\text{ if } \text{ otherwise}. \end{cases} \] Show that the partial derivatives of $f$ at $(0,0)$ exist but the function is not continuous at $(0,0)$.

Comments