03-04-2025

Problem: Let $\mathcal{F} (S)$ be the set of all finite subsets of a set $S$. Define a function \[ d: \mathcal{F} (S) \times \mathcal{F} (S) \to \mathbb{R} , \quad d(A,B) = \#\left( \triangle (A,B) \right) , \] where $\triangle(A,B) = (A \setminus B) \cup (B \setminus A)$, the symmetric difference of $A$ and $B$ and $\#$ denotes cardinality. Show that $d$ is a metric on $\mathcal{F} (S)$.

Comments