Problem: Find the integral surface of the linear partial differential equation
\[
x\left( y^2 +z\right)p - y\left( x^2 + z \right)q = \left( x^2 - y^2 \right) z
\]
which contains the straight line $x + y = 0$, $z = 1$. Here
\[
p = \frac{\partial z}{\partial x} \quad \text{ and } \quad q = \frac{\partial z}{\partial y} .
\]
After getting the solution, write,
\[
x = t, \quad y = -t,, \text{ and } \quad z = 1.
\]
Then substitute the values of $x,y,z$ in the solutions to get the value of $t$.
Solution: The given equation is
\begin{equation}\label{eq:28Mar2025-1}
x\left( y^2 +z\right)p - y\left( x^2 + z \right)q = \left( x^2 - y^2 \right) z .
\end{equation}
The corresponding Lagrange's auxiliary equations are
\begin{equation}\label{eq:28Mar2025-2}
\frac{\ \mathrm{d} x}{x \left( y^2 + z \right) } = \frac{\ \mathrm{d} y}{-y \left( x^2 + z \right) } = \frac{\ \mathrm{d} z}{z \left( x^2 - y^2 \right) }.
\end{equation}
Choosing $\frac{1}{x}, \frac{1}{y}, \frac{1}{z} $ as multipliers, each fraction of \eqref{eq:28Mar2025-1} equals to
\begin{align*}
\frac{\frac{1}{x} \ \mathrm{d}x + \frac{1}{y}\ \mathrm{d} y + \frac{1}{z}\ \mathrm{d} z}{y^2 + z - \left( x^2 + z \right) + x^2 - y^2} = \frac{\frac{1}{x}\ \mathrm{d} x + \frac{1}{y}\ \mathrm{d} y + \frac{1}{z}\ \mathrm{d} z}{0},
\end{align*}
which implies
\begin{align}
\frac{1}{x} \ \mathrm{d} x + \frac{1}{y}\ \mathrm{d} y + \frac{1}{z}\ \mathrm{d} z = 0 & \implies \ln (x) + \ln (y) + \ln (z) = \ln (c_1) \notag\\
& \implies \ln (xyz) = \ln (c_1)\notag \\
& \implies xyz = c_1. \label{eq:28Mar2025-3}
\end{align}
Similarly, choosing $x,y,-1$ as multipliers, each fraction of \eqref{eq:28Mar2025-1} equals to
\begin{align*}
\frac{x \ \mathrm{d} x + y \ \mathrm{d} y - \ \mathrm{d} z}{x^2 (y^2 + z) - y^2 (x^2 + z) - z(x^2 - y^2)} = \frac{x \ \mathrm{d} x + y \ \mathrm{d} y + \ \mathrm{d} }{0},
\end{align*}
which implies
\begin{align} \label{eq:28Mar2025-4}
x \ \mathrm{d} x + y \ \mathrm{d} y - \ \mathrm{d} z = 0 & \implies x^2 + y^2 - 2z = c_2.
\end{align}
Now from the given straight line $x+ y= 0, z = 1$, we can write,
\[
x = t, \quad y = -t,, \text{ and } \quad z = 1.
\]
Thus, the solutions can be written as
\begin{gather*}
xyz = c_1 \implies -t^2 = c_1 \\
x^2 + y^2 - 2z = c_2 \implies 2t^2 - 2 = c_2.
\end{gather*}
Solving for $t$, we get
\begin{align*}
2(-c_1) - 2 = c_2 \implies 2c_1 + c_2 + 2 = 0.
\end{align*}
Finally, substituting $c_1$ and $c_2$ from \eqref{eq:28Mar2025-3} and \eqref{eq:28Mar2025-4}, the integral surface is
\[
\textcolor{blue}{
\boxed{
2xyz + x^2 + y^2 - 2z + 2 = 0.
}
}
\]