Write the augmented matrix of the system of linear equations and apply the row-reduced echelon form.
After the reduction, you should get \[
\begin{bmatrix}
1 & -2 & 1 & 2 & 1 \\
0 & 1 & -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & -1
\end{bmatrix},
\] which shows that the system has no solution.
Solution: Given that the system of linear equations is
\begin{equation}\label{eq:23Mar2025-1}
\left.\begin{aligned}
x_1 - 2x_2 + x_3 + 2x_4 & = 1 \\
x_1 + x_2 - x_3 + x_4 & = 2 \\
x_1 + 7x_2 - 5x_3 - x_4 & = 3
\end{aligned}\right\}
\end{equation}
We will show that the above system has no solution. For that, let us consider the augmented matrix of the system \eqref{eq:23Mar2025-1}.
\begin{align*}
\begin{bmatrix}
1 & -2 & 1 & 2 & 1 \\
1 & 1 & -1 & 1 & 2 \\
1 & 7 & -5 & -1 & 3\\
\end{bmatrix}.
\end{align*}
We will now perform row operations to reduce the augmented matrix to row echelon form and analyze the resulting system.
\begin{align*}
\begin{bmatrix}
1 & -2 & 1 & 2 & 1 \\
1 & 1 & -1 & 1 & 2 \\
1 & 7 & -5 & -1 & 3
\end{bmatrix}
& \xrightarrow{
\begin{matrix}
R_2 \rightarrow R_2 - R_1 \\
R_3 \rightarrow R_3 - R_1
\end{matrix}
}
\begin{bmatrix}
1 & -2 & 1 & 2 & 1 \\
0 & 3 & -2 & -1 & 1 \\
0 & 9 & -6 & -3 & 2
\end{bmatrix} \\[2ex]
& \xrightarrow{
\begin{matrix}
R_3 \rightarrow R_3 - 3R_2
\end{matrix}
}
\begin{bmatrix}
1 & -2 & 1 & 2 & 1 \\
0 & 3 & -2 & -1 & 1 \\
0 & 0 & 0 & 0 & -1 \\
\end{bmatrix} \\[2ex]
& \xrightarrow{
\begin{matrix}
R_2 \rightarrow \frac{1}{3}R_2
\end{matrix}
}
\begin{bmatrix}
1 & -2 & 1 & 2 & 1 \\
0 & 1 & -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & -1
\end{bmatrix}.
\end{align*}
Since the first nonzero entry in the bottom row of the last matrix is in the rightmost column, the corresponding system of equations has no solution. Therefore, the system \eqref{eq:23Mar2025-1} has no solution.