Problem: A fluid motion is given by $\mathbf{v} = (y + z)\mathbf{i} + (z + x) \mathbf{j} + (x + y)\mathbf{k} $. Show that the motion is irrotational and hence find the scalar potential.
A vector field in $\mathbb{R} ^3$ is irrotational if its curl is zero.
To find the potential function $\phi$, solve the system
\[
(y + z)\mathbf{i} + (z + x) \mathbf{j} + (x + y)\mathbf{k} = \frac{\partial \phi }{\partial x}\mathbf{i} + \frac{\partial \phi }{\partial y} \mathbf{j} + \frac{\partial \phi }{\partial z} \mathbf{k}.
\]
Solution: We recall that a vector field in $\mathbb{R} ^3$ is irrotational if its curl is zero. We also recall that for a vector field $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, the curl is given by
\[
\mathrm{curl}(\mathbf{v} ) = \nabla \times \mathbf{v} =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
v_1 & v_2 & v_3
\end{vmatrix}.
\]
Thus the curl of the given vector field will be
\begin{align*}
\nabla \times \mathbf{v} & =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\
(y+z) & (z+x) & (x + y) \\
\end{vmatrix} \\
& = \left[ 1 - 1 \right] \mathbf{i} - \left[ 1 - 1 \right] \mathbf{j} + \left[ 1 -1 \right] \mathbf{k} = \mathbf{0} .
\end{align*}
Thus, the given vector filed id irrotational.
Since $\mathbf{v} $ is irrotational, we can find a scalar function (potential function) $\phi $ such that $\mathbf{v} = \mathrm{grad} (\phi)$. Thus we have
\begin{equation}\label{eq:22Mar2025-1}
(y + z)\mathbf{i} + (z + x) \mathbf{j} + (x + y)\mathbf{k} = \frac{\partial \phi }{\partial x}\mathbf{i} + \frac{\partial \phi }{\partial y} \mathbf{j} + \frac{\partial \phi }{\partial z} \mathbf{k}.
\end{equation}
This gives a system of equations
\begin{align*}
\frac{\partial \phi }{\partial x} = ( y + z) \implies \phi (x,y,z) & = \int (y +z) \ \mathrm{d} x + f(y,z) \\
& = x(y+z) + f(y,z),
\end{align*}
where $f(y,z)$ is a function of only $y$ and $z$.
Now differentiating $\phi $ with respect $y$ and from the equation \eqref{eq:22Mar2025-1},
\begin{align*}
\frac{\partial \phi }{\partial y} = (z + x) & \implies x + \frac{\partial f}{\partial y} = z + x \\
& \implies \frac{\partial f}{\partial y} = z \\
& \implies f(y,z) = yz + g(z),
\end{align*}
where $g$ is the function of $z$ only. Thus, $\phi (x,y,z) = x(y+z) + yz + g(z)$. Finally,
\begin{align*}
\frac{\partial \phi }{\partial z} = (x + y) & \implies x + y + g'(z) = x + y \\
& \implies g'(z) = 0\\
& \implies g(z) = c \text{ (constant) }.
\end{align*}
Therefore,
\[
\textcolor{blue}{
\boxed{
\phi (x,y,z) = xy + yz + zx + c
}
}
\]