20-03-2025

Problem: The diameter of a metric space $(X,d)$ is defined to be: \[ \operatorname{diam}(X,d) := \sup \{ d(x,y) : x,y \in X \} \] Compute the following diameters, justifying your answer:
  1. $\operatorname{diam}(\mathbb{R}^n, d)$, where $d$ is the usual (Euclidean) distance;
  2. $\operatorname{diam}(\mathbb{R}^n, \bar{d})$, where \[ \bar{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)}. \]

Comments