The group ring
\[
R\left[ \mathbb{Z} / 2\mathbb{Z} \right] \coloneqq \left\{ a \cdot\bar{0} + b\cdot \bar{1}: a,b \in R \right\} .
\]
Show that the map
\begin{gather*}
\phi : R \left[ \mathbb{Z} / 2 \mathbb{Z} \right] \to R \times R, \\
a \cdot\bar{0} + b\cdot \bar{1} \mapsto (a,b).
\end{gather*}
Solution: Recall that
\[
R\left[ \mathbb{Z} / 2\mathbb{Z} \right] \coloneqq \left\{ a \cdot\bar{0} + b\cdot \bar{1}: a,b \in R \right\} .
\]
Define a map
\begin{gather*}
\phi : R \left[ \mathbb{Z} / 2 \mathbb{Z} \right] \to R \times R, \\
a \cdot\bar{0} + b\cdot \bar{1} \mapsto (a,b).
\end{gather*}
Then we will show that $\phi $ is an isomorphism.
At first note that for $a \cdot\bar{0} + b\cdot \bar{1}, c \cdot\bar{0} + d\cdot \bar{1} \in R\left[ \mathbb{Z} / 2\mathbb{Z} \right] $, we have
\begin{align*}
\phi \left( \left( a \cdot\bar{0} + b\cdot \bar{1} \right) \left( c \cdot\bar{0} + d\cdot \bar{1} \right) \right) & = \phi \left( (ac + bd)\cdot \bar{0} + (ad + bc) \bar{1} \right) \\
& = (ac + bd, ad + bc) \\
& = (a,b) \cdot (c,d) \\
& = \phi \left( a \cdot\bar{0} + b\cdot \bar{1} \right) \cdot \phi \left( c \cdot\bar{0} + d\cdot \bar{1} \right) .
\end{align*}
Thus, $\phi $ is a homomorphism.
The kernel of $\phi $ is
\begin{align*}
\ker \phi & = \left\{ x = a \cdot\bar{0} + b\cdot \bar{1} \in R\left[ \mathbb{Z} /2\mathbb{Z} : \phi (x) = (0,0) \right] \right\} \\
& = \left\{ a \cdot\bar{0} + b\cdot \bar{1} \in R\left[ \mathbb{Z} /2\mathbb{Z} : (a,b) = (0,0) \right] \right\} \\
& = \{ 0 \} .
\end{align*}
Thus, $\phi $ is injective.
Also for any $(a,b) \in R \times R$,
\[
\phi \left( a \cdot\bar{0} + b\cdot \bar{1} \right) = (a,b).
\]
Thus, $\phi $ is surjective and hence an isomorphism.