Problem: Use Charpit's method to solve the following PDE:
\[
z = pq, \text{ where } p = \frac{\partial z}{\partial x} \text{ and } q = \frac{\partial z}{\partial y} .
\]
For a given PDE of the form \( f(x,y,z,p,q) = 0 \), the Charpit's auxiliary equations are
\[
\frac{\mathrm{d} x}{-f_p} = \frac{\mathrm{d} y}{-f_q} = \frac{\mathrm{d} z}{-p f_p - q f_q} = \frac{\mathrm{d} p}{f_x + p \mathrm{d} z} = \frac{\mathrm{d} q}{f_y + q \mathrm{d} z}.
\]
Use the auxiliary equations to find $p$ and $q$. Finally use $\mathrm{d}z = p \mathrm{d}x + q \mathrm{d}y$ to find the solution.
Solution: The given equation is
\begin{equation}\label{eq:28Feb2025-1}
z = pq.
\end{equation}
We recall that for $f(x,y,z,p,q) = 0$, the Charpit's auxiliary equations are
\[
\frac{\mathrm{d} x}{-f_p} = \frac{\mathrm{d} y}{-f_q} = \frac{\mathrm{d} z}{-p f_p - q f_q} = \frac{\mathrm{d} p}{f_x + p \mathrm{d} z} = \frac{\mathrm{d} q}{f_y + q \mathrm{d} z}.
\]
In this problem, we have $f = z - pq$. Thus, the above equations become
\begin{align*}
\frac{\mathrm{d} x}{q} = \frac{\mathrm{d} y}{p} = \frac{\mathrm{d} z}{2pq} = \frac{\mathrm{d} p}{p} = \frac{\mathrm{d} q}{q}.
\end{align*}
From the last two equations, we get
\begin{align*}
\frac{\mathrm{d} p}{p} = \frac{\mathrm{d} q}{q} & \implies \ln p = \ln q + \ln a \\
& \implies p = aq,
\end{align*}
where $a$ is a constant.
Substituting this into \eqref{eq:28Feb2025-1}, we get
\begin{align*}
z = aq^2 & \implies q = \sqrt{\frac{z}{a}}\\
& \implies p = a \sqrt{\frac{z}{a}} = \sqrt{az}.
\end{align*}
So, we have
\begin{align*}
\mathrm{d} z = p \mathrm{d} x + q \mathrm{d} y & \implies \mathrm{d} z = \sqrt{az} \mathrm{d} x + \sqrt{\frac{z}{a}} \mathrm{d} y \\
& \implies \int \frac{\mathrm{d} z}{\sqrt{z}} = \int \sqrt{a} \mathrm{d} x + \int \frac{1}{\sqrt{a}} \mathrm{d} y \\
& \implies 2\sqrt{z} = \sqrt{a} x + \frac{1}{\sqrt{a}} y + c \\
& \implies z = \frac{1}{4} \left( \sqrt{a} x + \frac{1}{\sqrt{a}} y + c \right)^2,
\end{align*}
where $a,b$ are constants. Thus, the complete integral of the given PDE is:
\[
z = \frac{1}{4} \left( \sqrt{a} x + \frac{1}{\sqrt{a}} y + c \right)^2.
\]