Solution: Given that $f$ is an entire function, so it can be represented by its Taylor series expansion around $z = 0 $. Let
\begin{equation}\label{eq:25Feb2025-1}
f(z) = \sum_{n=0}^{\infty} a_n z^n
\end{equation}
be the Taylor series of $f$ on an open disc $\vert z \vert < r$, where
\[
a_n = \frac{1}{2\pi \iota } \oint_{\vert z \vert = r} \frac{f(w)}{w^{n+1}} \mathrm{d} w = \frac{f^{(n)}(0)}{n!}.
\]
Since $\vert f(z) \vert \leq A + B \vert z \vert ^{3 / 2}$, on the circle $\vert z \vert = r$, the function is bounded by
\[
\vert f(z) \vert \leq A + B r^{3 / 2} \coloneqq M.
\]
Therefore, using
Cauchy's estimate, we get
\[
\left\vert a_n \right\vert = \left\vert \frac{f^{(n)}(0)}{n!} \right\vert \leq \left\vert \left( \frac{n!}{r^n} M\right) \times \frac{1}{n!} \right\vert = \frac{M}{r^n}.
\]
Note that since $A, B$ are fixed real numbers, we can always choose $r>0$ such that $M \leq r^2$. Thus, for $n\geq 2$,
\[
\lim_{r \to \infty} \frac{M}{r^n} = 0.
\]
Therefore, for $n\geq 2$, we have $a_n = 0$. Thus, the Taylor series expansion of $f$ in \eqref{eq:25Feb2025-1} reduces to
\[
f(z) = a_0 + a_1 z.
\]
Thus, $f$ is a linear polynomial.