Re-write the equation as
\[
\left( \frac{1}{\sqrt{z} } p \right) ^2 + \left( \frac{1}{\sqrt{z}}q\right) ^2 = x^2 + y^2,
\]
and find $Z$ by assuming $\frac{1}{\sqrt{z}} \mathrm{d}z = \mathrm{d} Z.$
Express the transformed equation in terms of new partial derivatives and recognize its structure.
Identify separable parts and integrate carefully to obtain \( Z \).
Solution: The given equation is
\begin{equation}\label{eq:21Feb2025-1}
p^2 - q^2 = \left( x^2 + y^2 \right) z,
\end{equation}
which can be re-written as
\begin{equation}\label{eq:21Feb2025-2}
\left( \frac{1}{\sqrt{z} } \frac{\partial z}{\partial x} \right) ^2 + \left( \frac{1}{\sqrt{z}}\frac{\partial z}{\partial y} \right) ^2 = x^2 + y^2.
\end{equation}
Let
\[
\frac{1}{\sqrt{z}}\mathrm{d} z = \mathrm{d} Z \implies 2 \sqrt{z} = Z .
\]
Using the above in \eqref{eq:21Feb2025-2}, we get
\[
\left( \frac{\partial Z}{\partial x} \right) ^2 + \left( \frac{\partial Z}{\partial y} \right) ^2 = x^2 + y^2,
\]
which we can write as
\[
P^2 + Q^2 = x^2 + y^2 , \quad P = \frac{\partial Z}{\partial x} \text{ and } Q = \frac{\partial Z}{\partial y} .
\]
Thus we get
\begin{align*}
P^2 - x^2 = y^2 - Q^2.
\end{align*}
This implies both the equation will be constant. Equating each side to an arbitrary constant $a^2$, we have
\begin{align*}
& P^2 - x^2 = a^2 \quad \text{ and } \quad y^2 - Q^2 = a^2 \\
\implies & P = \sqrt{x^2 + a^2} \quad \text{ and } \quad Q = \sqrt{y^2 - a^2} .
\end{align*}
Since
\begin{align*}
\mathrm{d} Z = P \mathrm{d} x + Q \mathrm{d} y & \implies \mathrm{d} Z = \sqrt{x^2 + a^2} \mathrm{d} x + \sqrt{y^2 - a^2} \mathrm{d} y \\
& \implies Z = \textcolor{blue}{\int \sqrt{x^2 + a^2}\ \mathrm{d} x} + \textcolor{magenta}{\int \sqrt{y^2 - a^2}\ \mathrm{d} y} \\
& \implies Z = \textcolor{blue}{\frac{1}{2} x \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left\vert x + \sqrt{x^2 + a^2} \right\vert }\\
& \kern 1.7cm + \textcolor{magenta}{\frac{1}{2} y \sqrt{y^2 - a^2} - \frac{a^2}{2} \ln \left\vert x + \sqrt{y^2 - a^2} \right\vert}.
\end{align*}
Since $Z = 2\sqrt{z} $,the required integral will be
\[
z = \frac{Z^2}{4}.
\]