Problem: Solve the following differential equation:
\[
(x+y)\left( \mathrm{d} x - \mathrm{d} y \right) = \mathrm{d} x + \mathrm{d} y.
\]
Solution: The given equation is
\begin{equation}\label{eq:14Feb2025-1}
(x+y)\left( \mathrm{d} x - \mathrm{d} y \right) = \mathrm{d} x + \mathrm{d} y.
\end{equation}
Re-writing the above equation as
\begin{equation}\label{eq:14Feb2025-2}
(x + y -1) \mathrm{d} x = (x + y + 1) \mathrm{d} y \implies \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{x + y - 1}{x + y + 1}.
\end{equation}
Let $v = x + y$. So we have
\begin{align*}
\frac{\mathrm{d} v}{\mathrm{d} x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x} - 1.
\end{align*}
Substituting the above in Equation \eqref{eq:14Feb2025-2}, we get
\begin{align*}
\frac{\mathrm{d}v}{\mathrm{d}x} - 1 = \frac{v - 1}{v + 1} & \implies \frac{\mathrm{d}v}{\mathrm{d}x} = 1 + \frac{v - 1}{v + 1} \\
& \implies \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{2v}{v + 1} \\
& \implies \left( \frac{v+1}{v} \right) \mathrm{d} v = 2\mathrm{d} x \\
& \implies \left( 1 + \frac{1}{v} \right)\mathrm{d} v = 2\mathrm{d} x \\
& \implies \int \left( 1 + \frac{1}{v} \right)\mathrm{d} v = \int 2 \mathrm{d} x \\
& \implies v + \ln v = 2x + c \\
& \implies x - y + c = \log (x + y).
\end{align*}
Thus, the solution to the given differential equation \eqref{eq:14Feb2025-1} is:
\[
\textcolor{blue}{
\boxed{
x - y + c = \log (x + y).
}
}
\]