Let us denote the elements of the group by
\[
e, r, r^2, r^3, l_v, l_h, l_d, l_{d'},
\]
where $r$ is the rotation by $90^\circ$ (counterclockwise) and $l_h, l_v, l_d \text{ and } l_{d'}$ denote the reflections along the vertical, horizontal, diagonal, and anti-diagonal respectively.
The group action can be written in the following table.
\[
\begin{array}{c|c|c|c|c}
& (1,1) & (1,-1) & (-1,-1) & (-1,1) \\
\hline
e & (1,1) & (1,-1) & (-1,-1) & (-1,1) \\\hline
r & (-1,1) & (1,1) & (1,-1) & (-1,-1) \\\hline
r^2 & (-1,-1) & (-1,1) & (1,1) & (1,-1) \\\hline
r^3 & (1,-1) & (-1,-1) & (-1,1) & (1,1) \\\hline
l_h & (1,-1) & (1,1) & (-1,1) & (-1,-1) \\\hline
l_v & (-1,1) & (-1,-1) & (1,-1) & (1,1) \\\hline
l_d & (1,1) & (-1,1) & (-1,-1) & (1,-1) \\\hline
l_{d'} & (-1,-1) & (1,-1) & (1,1) & (-1,1) \\\hline
\end{array}
\]
Now it is easy to find the orbit and stabilizer of each point.
\begin{align*}
O_{(1,1)} & = \{(1,1), (1,-1), (-1,1), (-1,-1)\} \\
S_{(1,1)} & = \{ e, l_d\} \\
O_{(-1,1)} & = \{(1,1), (1,-1), (-1,1), (-1,-1)\} \\
S_{(-1,1)} & = \{ e, l_{d'} \} \\
O_{(-1,-1)} & = \{(1,1), (1,-1), (-1,1), (-1,-1)\} \\
S_{(-1,-1)} & = \{ e, l_d \} \\
O_{(1,-1)} & = \{(1,1), (1,-1), (-1,1), (-1,-1)\} \\
S_{(1,-1)} & = \{ e, l_{d'} \}
\end{align*}
Note that for each of the points, the size of the orbit is $4$ and the size of the stabilizer is $2$. According to the
orbit-stabilizer theorem for a finite group, the size of the orbit times the size of the stabilizer is equal to the order of the group. Thus, the orbit-stabilizer theorem holds for the action of $D_4$ on the vertices of the square.