Problem: Find the value of the infinite sum $\displaystyle \sum_{n=0}^{\infty} \frac{\pi ^n}{n!}$.
Solution: We recall that the Taylor's series expansion for $e^x$ is given by
\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.
\]
Setting $x = \pi $, we get
\[
e^\pi = \sum_{n=0}^{\infty} \frac{\pi ^n}{n!}.
\]
Thus, the value of the infinite sum is
\[
\textcolor{blue}{\boxed{
\sum_{n=0}^{\infty} \frac{1}{n!} = e
}}
\]