Problem: Find the eigenvalues and corresponding eigenvectors of the following matrix:
\[
A =
\begin{bmatrix}
10001 & 3 & 5 & 7 & 9 & 11 \\
1 & 10003 & 5 & 7 & 9 & 11 \\
1 & 3 & 10005 & 7 & 9 & 11 \\
1 & 3 & 5 & 10007 & 9 & 11 \\
1 & 3 & 5 & 7 & 10009 & 11 \\
1 & 3 & 5 & 7 & 9 & 10011
\end{bmatrix}.
\]
Solution: Let $B = A - 10000I_6$, where $I_6$ is the identity matrix of order $6$. That is,
\begin{align*}
B =
\begin{bmatrix}
1 & 3 & 5 & 7 & 9 & 11 \\
1 & 3 & 5 & 7 & 9 & 11 \\
1 & 3 & 5 & 7 & 9 & 11 \\
1 & 3 & 5 & 7 & 9 & 11 \\
1 & 3 & 5 & 7 & 9 & 11 \\
1 & 3 & 5 & 7 & 9 & 11
\end{bmatrix}.
\end{align*}
It is clear that the matrix $B$ is a rank-1 matrix since all rows are identical. Therefore, $B$ has one non-zero eigenvalue and the rest are zero.
To find the non-zero eigenvalue, we can use the fact that the sum of the eigenvalues of a matrix is equal to the trace of the matrix. The trace of $B$ is
\[
\operatorname{tr}(B) = 1 + 3 + 5 + 7 + 9 + 11 = 36.
\]
Thus, the non-zero eigenvalue of $B$ is 36, and the remaining eigenvalues are 0.
Now we know that the eigenvalues of $A = B + 10000I_6$, are $\{\lambda + 10000: \lambda \text{ is an eigenvalue of $B$ } \}$ (see
problem of the day (26-01-2025)). Thus, the eigenvalues of $A$ will be
\[
10036, 10000, 10000, 10000, 10000, 10000.
\]
We know that the eigenvectors of $A$ are the same as the eigenvectors of $B$ (see
problem of the day (26-01-2025)).
Observe that
\[
B \begin{bmatrix}
1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1
\end{bmatrix} = \begin{bmatrix}
36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36
\end{bmatrix}.
\]
Thus, corresponding to the eigenvalue 36, the eigenvector is
\[
\begin{bmatrix}
1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1
\end{bmatrix}.
\]
Hence, the eigenvector of $A$ corresponding to the eigenvalue 10036 is
\[
\begin{bmatrix}
1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1
\end{bmatrix}.
\]
Now let us find the eigenvectors of $B$ corresponding to the eigenvalue $0$. We need to solve $B \mathbf{x} = 0$, which is same as finding the null space of $B$. Applying the elementary row operations on $B$ gives
\[
\begin{bmatrix}
1 & 3 & 5 & 7 & 9 & 11 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]
Thus, the null space of $B$ is spanned by the vector (which are also eigenvectors of $B$ corresponding to the eigenvalue 0)
\[
\left\{
\begin{bmatrix}
-3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix},
\begin{bmatrix}
-5 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0
\end{bmatrix},
\begin{bmatrix}
-7 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0
\end{bmatrix},
\begin{bmatrix}
-9 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0
\end{bmatrix},
\begin{bmatrix}
-11 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1
\end{bmatrix}
\right\} .
\]
Therefore, the eigenvectors of $A$ corresponding to the eigenvalue $10000$ are
\[
\left\{
\begin{bmatrix}
-3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix},
\begin{bmatrix}
-5 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0
\end{bmatrix},
\begin{bmatrix}
-7 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0
\end{bmatrix},
\begin{bmatrix}
-9 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0
\end{bmatrix},
\begin{bmatrix}
-11 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1
\end{bmatrix}
\right\} .
\]