Problem: Let $(X,d)$ be a metric space. Given a point $x \in X$ and a real number $r > 0$, show that the set 
                    \[
                        U = \left\{ y \in X : d(x,y) > r \right\} 
                    \]
                    is open in $X$. 
                  
                 
              
                
                
                
                  
                    Solution: Let $y \in U$. We need to show that there exists $\epsilon > 0$ such that $B(y, \epsilon ) \subseteq U$. Look at the figure below and choose $\epsilon $ as shown in the picture, 
                    \[
                        \epsilon = d(x,y) - r.
                    \] 
                    
                   
                  
                  
                  
                    We claim that $B(y, \epsilon) \subseteq U $. Take $z \in B(y, \epsilon )$. Then, we have 
                    \begin{align*}
                        d(y,z) < \epsilon & \implies d(y,z) < d(x,y) - r \\
                                          & \implies d(y,z) + r < d(x,y) \\
                                          & \kern 2.5cm \leq d(x,z) + d(y,z)\\
                                          & \implies d(x,z) > r.
                    \end{align*}  
                    Thus,  $z \in U$.