Problem: Find the value of 
                    \[
                        \sum_{n=0}^{\infty} n \cdot \left( \frac{1}{2} \right)^n.
                    \]
                  
                  
                  
                  
                  
                 
                
                
                
                
                  
                    Solution: Note that the given sequence is an arithmetic-geometric series. Let 
                    \[
                        S = \sum_{n=0}^{\infty} n \cdot \left( \frac{1}{2} \right)^n.
                    \]
                    First of all, we will show that the given series is convergent. For that, we will use the ratio test. Consider the general term of the series:
                    \[
                        a_n = n \cdot \left( \frac{1}{2} \right)^n.
                    \]
                    We need to find the limit
                    \[
                        \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.
                    \]
                    We have
                    \begin{align*}
                        \frac{a_{n+1}}{a_n} & = \frac{(n+1) \cdot \left( \frac{1}{2} \right)^{n+1}}{n \cdot \left( \frac{1}{2} \right)^n} \\
                        & = \frac{n+1}{2n}.
                    \end{align*}
                    Taking the limit as \( n \) approaches infinity, we get
                    \[
                        \lim_{n \to \infty} \frac{n+1}{2n} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} = \frac{1}{2}.
                    \]
                    Since the limit is less than $1$, the ratio test confirms that the series is convergent.
                  
                  
                  
                  
                    Now we assume that 
                    \[
                        S = 0 \cdot \left( \frac{1}{2} \right)^0 + 1 \cdot \left( \frac{1}{2} \right)^1 + 2 \cdot \left( \frac{1}{2} \right)^2 + 3 \cdot \left( \frac{1}{2} \right)^3 + \cdots
                    \]
                    Multiplying both sides by $\frac{1}{2}$, we get
                    \[
                        \frac{S}{2} = 0 \cdot \left( \frac{1}{2} \right)^1 + 1 \cdot \left( \frac{1}{2} \right)^2 + 2 \cdot \left( \frac{1}{2} \right)^3 + 3 \cdot \left( \frac{1}{2} \right)^4 + \cdots
                    \]
                    Subtracting the above equation from $S$, we get
                    \begin{align*}
                        S - \frac{S}{2} & = \left( 1 \cdot \left( \frac{1}{2} \right)^1 + 2 \cdot \left( \frac{1}{2} \right)^2 + 3 \cdot \left( \frac{1}{2} \right)^3 + \cdots \right) \\
                        & \quad - \left( 0 \cdot \left( \frac{1}{2} \right)^1 + 1 \cdot \left( \frac{1}{2} \right)^2 + 2 \cdot \left( \frac{1}{2} \right)^3 + \cdots \right) \\[1ex]
                        \implies \frac{S}{2} & = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots \\[1ex]
                        \implies S & = 2 \sum_{n = 1}^{\infty} \left( \frac{1}{2} \right)^n = 2 \left( \frac{\frac{1}{2}}{1-\frac{1}{2}} \right) = 2.
                    \end{align*}
                    Thus, 
                    \[
                        \textcolor{blue}{\boxed{
                            \sum_{n=0}^{\infty} n \cdot \left( \frac{1}{2} \right)^n = 2
                        }}
                    \]