20-01-2025

Problem: Let \( f: [a, b] \to \mathbb{R} \) be a continuous function such that \( f(a) = f(b) \). Show that there exists \( c \in (a, b) \) such that: \[ f(c) = f\left(c + \frac{b-a}{2}\right). \]
Solution: Define a function \( g: [a, \frac{a+b}{2}] \to \mathbb{R} \) by: \[ g(x) = f(x) - f\left(x + \frac{b-a}{2}\right). \] Since \( f \) is continuous on \([a, b]\), \( g \) is continuous on \([a, \frac{a+b}{2}]\). Now observe that: \begin{align*} g(a) & = f(a) - f\left(a + \frac{b-a}{2}\right) \\ & = f(a) - f\left(\frac{a+b}{2}\right) \\ & = f(b) - f\left(\frac{a+b}{2}\right). \end{align*} Similarly, \begin{align*} g\left(\frac{a+b}{2}\right) & = f\left(\frac{a+b}{2}\right) - f\left(\frac{a+b}{2} + \frac{b-a}{2}\right) \\ & = f\left(\frac{a+b}{2}\right) - f(b) . \end{align*} Thus, \[ g(a) = -g\left(\frac{a+b}{2}\right). \] If \( g(a) = 0 \), then \( c = a \) satisfies the condition. Otherwise, \( g(a) \) and \( g\left(\frac{a+b}{2}\right) \) have opposite signs. By the Intermediate Value Theorem, there exists \( c \in \left(a, \frac{a+b}{2}\right) \) such that \( g(c) = 0 \). This implies: \[ f(c) = f\left(c + \frac{b-a}{2}\right), \] as required.