Problem: Suppose $\{ p_n \} $ and $\{ q_n \} $ are Cauchy sequences in a metric space $X$. Show that the sequence $\{ d(p_n, q_n) \} $ converges.
Solution: Let $\epsilon > 0$ be given. Since the sequences $\{ p_n \} $ and $\{ q_n \} $ are Cauchy, there exists $n_1, n_2 \in \mathbb{N} $ such that
\begin{align}
& d \left( p_m, p_n \right) < \frac{\epsilon }{2} \quad \forall\ m,n \geq n_1 \label{eq:16Jan2025-1} \\
& d \left( q_m, q_n \right) < \frac{\epsilon }{2} \quad \forall\ m,n \geq n_2 \label{eq:16Jan2025-2}.
\end{align}
Let $n_0 = \max \{ n_1, n_2 \} $. Then for any $m,n \geq n_0$,
\begin{align*}
d(p_m, p_n) < \frac{\epsilon }{2} \quad \text{ and } \quad d(q_m, q_n) < \frac{\epsilon }{2}.
\end{align*}
Let $m,n \geq n_0$. Then using triangle's inequality and equations \eqref{eq:16Jan2025-1}, \eqref{eq:16Jan2025-2}, we have
\begin{align*}
d\left( p_n, q_n \right) & \leq d\left( p_n, p_m \right) + d\left( p_m, q_m \right) + d\left( q_m, q_n \right) \\
& < \frac{\epsilon }{2 } + d\left( p_m, q_m \right) + \frac{\epsilon }{2}.
\end{align*}
This implies
\[
\left\vert d\left( p_n, q_n \right) - d\left( p_m, q_m \right) \right\vert < \epsilon .
\]
This proves that the sequence $\{ d\left( p_n, q_n \right) \} $ is Cauchy in $\mathbb{R} $ and hence convergent in $\mathbb{R} $.