Problem: List the six elements of $GL(2, \mathbb{Z}_2 )$. Show that this group is non-Abelian by finding two elements that do not commute.
Solution: Any element of $GL(2, \mathbb{Z} _2)$ will be
\[
\left\{ \begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}: ad - bc \neq 0 \text{ and } a,b,c,d \in \mathbb{Z} _2. \right\}
\]
Since \( \mathbb{Z} _2 = \{0,1\} \), there are \( 2^4 = 16 \) possible matrices. However, only those matrices for which \( ad - bc \neq 0 \) are in \( GL(2, \mathbb{Z} _2) \). The six elements of \( GL(2, \mathbb{Z} _2) \) are
\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 0 \\
1 & 1 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}.
\]
To show that \( GL(2, \mathbb{Z} _2) \) is non-Abelian, we will find two elements that do not commute. Consider the matrices
\[
A = \begin{bmatrix}
1 & 1 \\
0 & 1 \\
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
\end{bmatrix}.
\]
Then
\[
AB = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix} \quad \text{and} \quad BA = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}.
\]
Since \( AB \neq BA \), we conclude that \( GL(2, \mathbb{Z} _2) \) is non-abelian.