Problem: List the six elements of $GL(2, \mathbb{Z}_2 )$. Show that this group is non-Abelian by finding two elements that do not commute. 
                  
                 
              
                
                
                
                  
                    Solution: Any element of $GL(2, \mathbb{Z} _2)$ will be
                    \[
                        \left\{ \begin{bmatrix}
                            a &  b \\
                            c &  d \\
                        \end{bmatrix}: ad - bc \neq 0 \text{ and } a,b,c,d \in \mathbb{Z} _2. \right\} 
                    \]
                    Since \( \mathbb{Z} _2 = \{0,1\} \), there are \( 2^4 = 16 \) possible matrices. However, only those matrices for which \( ad - bc \neq 0 \) are in \( GL(2, \mathbb{Z} _2) \). The six elements of \( GL(2, \mathbb{Z} _2) \) are
                    \[
                        \begin{bmatrix}
                            1 & 0 \\
                            0 & 1 \\
                        \end{bmatrix}, \quad
                        \begin{bmatrix}
                            1 & 1 \\
                            0 & 1 \\
                        \end{bmatrix}, \quad
                        \begin{bmatrix}
                            1 & 0 \\
                            1 & 1 \\
                        \end{bmatrix}, \quad
                        \begin{bmatrix}
                            1 & 1 \\
                            1 & 0 \\
                        \end{bmatrix}, \quad
                        \begin{bmatrix}
                            0 & 1 \\
                            1 & 0 \\
                        \end{bmatrix}, \quad
                        \begin{bmatrix}
                            0 & 1 \\
                            1 & 1 \\
                        \end{bmatrix}.
                    \]
                  
                  
                  
                  
                    To show that \( GL(2, \mathbb{Z} _2) \) is non-Abelian, we will find two elements that do not commute. Consider the matrices
                    \[
                        A = \begin{bmatrix}
                            1 & 1 \\
                            0 & 1 \\
                        \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
                            1 & 0 \\
                            1 & 1 \\
                        \end{bmatrix}.
                    \]
                    Then
                    \[
                        AB = \begin{bmatrix}
                            1 & 1 \\
                            1 & 1 \\
                        \end{bmatrix} \quad \text{and} \quad BA = \begin{bmatrix}
                            1 & 1 \\
                            1 & 0 \\
                        \end{bmatrix}.
                    \]
                    Since \( AB \neq BA \), we conclude that \( GL(2, \mathbb{Z} _2) \) is non-abelian.