13-01-2025

Problem: Let \( f: \mathbb{R} \to \mathbb{R} \) be a function defined by: \[ f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{ if } x \neq 0, \\ 0 & \text{ if } x = 0. \end{cases} \]
  1. Show that \( f \) is differentiable at \( x = 0 \).
  2. Is \( f' \) continuous at \( x = 0 \)?
Solution: We recall that a function \( f: \mathbb{R} \to \mathbb{R} \) is differentiable at a point \( x = a \) if the limit \[ f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \] exists.
  1. To show that \( f \) is differentiable at \( x = 0 \), we will find the derivative of \( f \) at \( x = 0 \) by using the definition of the derivative: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}. \] Substituting \( f(h) = h^2 \sin\left(\frac{1}{h}\right) \) and \( f(0) = 0 \), we get: \[ f'(0) = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right). \] Since \( \left\vert \sin\left(\frac{1}{h}\right) \right\vert \leq 1 \) for all \( h \neq 0 \), we have: \[ 0 \leq \left\vert h \sin\left(\frac{1}{h}\right) \right\vert \leq |h|. \] By the Sandwich Theorem, \[ \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0. \] Thus, \( f'(0) = 0 \), and \( f \) is differentiable at \( x = 0 \).

  2. Note that the derivative of \( f \) is given by: \[ f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), &\text{ if } x \neq 0 ;\\ 0, &\text{ if } x = 0. \end{cases} \] We will show that the limit of \( f'(x) \) as \( x \to 0 \) does not exist. Consider the sequences \( x_n = \frac{1}{(2n + 1)\pi} \) and \( y_n = \frac{1}{2 n \pi } \). Note that the sequences $\left( x_n \right) $ and $\left( y_n \right) $ converges to $0$. Then: \begin{align*} \lim_{n \to \infty} f'(x_n) & = \lim_{n \to \infty} \left[ 2\cdot \frac{1}{(2n+1)\pi} \sin((2n +1)\pi) - \cos((2n+1)\pi) \right] \\ & = -1, \text{ and } \\[1ex] \lim_{n \to \infty} f'(y_n) & = \lim_{n \to \infty} \left[ 2\cdot \frac{1}{2 \pi n} \sin(2 \pi n) - \cos(2 \pi n) \right] = 1. \end{align*} Since the limit of \( f'(x) \) as \( x \to 0 \) does not exist, \( f' \) is not continuous at \( x = 0 \).