Problem: Find the eigenvalues and the corresponding eigenfunction of
\[
y''(x) + \lambda y(x) = 0, \quad y(0) = 0 \text{ and } y'(L) = 0.
\]
Solution: The given differential equation is
\begin{equation}\label{eq:10Jan2025-1}
\begin{cases}
y''(x) + \lambda y(x) = 0 \\
y(0) = 0 \text{ and } y'(L) = 0.
\end{cases}
\end{equation}
Consider the following cases.
Case 1: Let $\lambda = 0$. Then the equation \eqref{eq:10Jan2025-1} will become
\[
y''(x) = 0 , \quad y(0) = 0 \text{ and } y'(L) = 0.
\]
The solution of the above equation is
\[
y(x) = Ax + B \quad y(0) = 0 \text{ and } y'(L) = 0.
\]
With the two boundary conditions, we get $A = B = 0$. Thus, this can not be an eigenfunction.
Case 2: Let $\lambda = -k^2$ for $k\neq 0$. The differential equation \eqref{eq:10Jan2025-1} reduces to
\[
y''(x) - k^2 y(x) = 0 \implies y(x) = A e^{kx} + B e^{-kx}.
\]
Applying the boundary conditions, we get
\begin{align*}
a + b = 0 \text{ and } Ak - bk = 0 \implies A = B = 0.
\end{align*}
Thus, here also, we do not get any eigenfunction.
Case 3: Let $\lambda = k^2,$ for $k\neq 0$. The differential equation will be
\[
y''(x) + k^2 y(x) = 0 \implies y(x) = A\cos (kx) + B \sin (kx).
\]
Using the boundary conditions, we get
\begin{align*}
y(0) = 0 & \implies A = 0 \\
y'(L) = 0 & \implies -Bk \cos (kL) = 0.
\end{align*}
If $B = 0$, then again we will not get any eigenfunction, so we assume that $B\neq 0$. Thus,
\begin{align*}
\cos (kL) = 0 & \implies kL = (2n + 1) \frac{\pi}{2}, \ n \in \mathbb{Z} \\
& \implies k = (2n + 1) \frac{\pi }{2L}, \ n \in \mathbb{Z} .
\end{align*}
Therefore, the eigenvalues will be
\[
\lambda _n = k^2 = (2n + 1)^2 \frac{\pi ^2}{4L^2}, \ n = 0,1,2, \dots
\]
and the corresponding eigenfunction will be
\[
y_n(x) = B_n \sin \left( (2n + 1) \frac{\pi }{2L} \right), \ n \in \mathbb{Z} .
\]