Problem: Consider $\mathbb{R} ^3 $ as a vector space with the usual operations of vector addition and scalar multiplication. Let $\mathbf{x} \in \mathbb{R} ^3$ be denoted by $\mathbf{x} = (x_1, x_2, x_3)$. Define subspaces $W_1$ and $W_2$ by
\begin{align*}
W_1 & = \left\{ \mathbf{x} \in \mathbb{R} ^3 : x_1 + 2x_2 - x_3 = 0 \right\} \\
W_2 & = \left\{ \mathbf{x} \in \mathbb{R} ^3 : 2x_1 + 3x_3 = 0 \right\} .
\end{align*}
Let $\dim U$ denotes the dimension of the subspace $U$. Which of the following statements are TRUE?
- $\dim (W_1) = \dim (W_2)$
- $\dim (W_1) + \dim (W_2) - \dim \left( \mathbb{R} ^3 \right) = 1$
- $\dim (W_1 + W_2) = 2$
- $\dim (W_1 \cap W_2) = 1$
Solution: Note that
\begin{align*}
W_1 & = \left\{ \mathbf{x} \in \mathbb{R} ^3 : x_1 + 2x_2 - x_3 = 0 \right\} \\
& = \left\{ \mathbf{x} \in \mathbb{R} ^3: x_1 + 2x_2 = x_3 \right\} \\
& = \left\{ \left( x_1, x_2, x_1 + 2x_2 \right) : x_1, x_2 \in \mathbb{R} \right\} \\
& = \operatorname{span}\left\{ (1,0,1), (0,1,2) \right\} .
\end{align*}
Similarly,
\begin{align*}
W_2 & = \left\{ \mathbf{x} \in \mathbb{R} ^3 : 2x_1 + 3x_3 = 0 \right\}\\
& = \left\{ \left( x_1, x_2, -\frac{3}{2}x_1 \right) : x_1, x_2 \in \mathbb{R} \right\} \\
& = \operatorname{span}\left\{ (2,0,-3), (0,1,0) \right\} .
\end{align*}
Therefore,
\[
\dim (W_1) = 2 = \dim (W_2).
\]
Now, we also know that for any subspaces $W_1, W_2$ we must have
\begin{align*}
\dim \left( W_1 + W_2 \right) = \dim (W_1) + \dim (W_2) - \dim (W_1 \cap W_2).
\end{align*}
Note that
\[
\det
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 1 & 0 \\
\end{bmatrix} = -2 \neq 0,
\]
thus, the set
\[
\left\{ (1,0,1), (0,1,2), (0,1,0) \right\}
\]
is linearly independent and hence forms a basis for $\mathbb{R} ^3$. Since
\[
W_1 + W_2 = \operatorname{span}\left\{ W_1 \cup W_2 \right\} \implies \dim (W_1 + W_2) = 3.
\]
Hence,
\begin{align*}
\dim (W_1 \cap W_2) = \dim (W_1) + \dim (W_2) - \dim \left( W_1 + W_2 \right) = 1.
\end{align*}
Thus, the correct options are (A), (B), (D) and (C) is FALSE.