Problem: Find the third order differential equation whose solution is the $3$-parameter family of curves defined by
\[
x^2 + y^2 + 2ax + 2by + c = 0,
\]
where $a,b,c$ are parameters.
Solution: The given curve is
\begin{equation}\label{eq:03Jan2025-1}
x^2 + y^2 + 2ax + 2by + c = 0.
\end{equation}
Differentiating \eqref{eq:03Jan2025-1} with respect to $x$ thrice, we get
\begin{gather}
2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} + 2a + 2b \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \label{eq:03Jan2025-2} \\[2ex]
1 + \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + y \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + b \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0 \label{eq:03Jan2025-3} \\[2ex]
2 \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + y \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + d \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 0 \label{eq:03Jan2025-4}.
\end{gather}
In short, we can write,
\begin{equation}\label{eq:03Jan2025-5}
3y'y'' + (y + b) y''' = 0.
\end{equation}
Now we will find $b$ from the above equations. Using \eqref{eq:03Jan2025-3} and \eqref{eq:03Jan2025-4}, we eliminate $b$. More precisely, multiplying both side of \eqref{eq:03Jan2025-3} by $y'''$ and \eqref{eq:03Jan2025-5} by $y''$ and finally subtract them to get
\[
\left[ 1 + \left( y' \right) ^2 \right] y''' - 3 y' \left( y'' \right) ^2 = 0.
\]
Thus, the corresponding differential equation will be
\[
\textcolor{blue}{
\boxed{
\left[ 1 + \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 \right] \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} - 3 \frac{\mathrm{d}y}{\mathrm{d}x} \left( \frac{\mathrm{d}^2y}{\mathrm{d}x^2} \right) ^2 = 0.
}
}
\]