24-08-2024

Problem: The mileage $C$ in thousands of kilometers which car owners get with a certain kind of tyres is a random variable having probability density function \[ f(x) = \begin{cases} \frac{1}{20}e^{-\frac{x}{20}}, &\text{ if } x > 0;\\ 0, &\text{ if } x \leq 0. \end{cases} \] Find the probabilities that one of these tyres will last
  • at most $10,000$ kilometers;
  • anywhere from $16,000$ to $24,000$ kilometers;
  • at least $30,000$ kilometers.
Solution: The given probability distribution function is \[ f(x) = \begin{cases} \frac{1}{20}e^{-\frac{x}{20}}, &\text{ if } x > 0;\\ 0, &\text{ if } x \leq 0. \end{cases} \] Let $X$ denote the millage in thousand kilometers with a certain kind of tyre.

  • We need to find the probability that one of the tyres will last at most $10,000$ kilometers. It will be \begin{align*} P( X \leq 10) & = \int _{-\infty }^{10} f(x) \mathrm{d} x\\ & = \int _0^{10} \frac{1}{20} e^{-\frac{x}{20}} \mathrm{d} x \\[1ex] & = \frac{1}{20} \left[ \dfrac{e^{-\frac{x}{20}}}{-1 / 20} \right]_0^{10} \\[1ex] & = \left[ -e^{-\frac{10}{20}} + e^{\frac{0}{20}} \right] \\[1ex] & = 1 - e^{-\frac{1}{2}} = 0.3935. \end{align*}

  • The probability that one of the tyres will last between $16,000$ to $24,000$ kilometers will be \begin{align*} P(16 \le X \le 24) & = \int_{16}^{24} f(x) \mathrm{d} x \\ & = \frac{1}{20} \int_{16}^{24} e^{-\frac{x}{20}} \mathrm{d} x \\[1ex] & = \frac{1}{20}\left[ \dfrac{e^{-\frac{x}{20}}}{-1 / 20} \right]_{16}^{24} \\[1ex] & = \left[ - e^{-\frac{24}{20}} + e^{-\frac{16}{20}} \right] \\[1ex] & = e^{-\frac{4}{5}} - e^{-\frac{6}{5}} \\ & = 0.1481. \end{align*}

  • Finally, the probability that one of the tyres will last at least $30,000$ kilometers will be \begin{align*} P(X \geq 30) & = \int_{30}^{\infty} f(x)\mathrm{d} x\\ & = \frac{1}{20} \int_{30}^{\infty } e^{-\frac{x}{20}} \mathrm{d} x\\[1ex] & = \frac{1}{20} \left[ \dfrac{e^{-\frac{x}{20}}}{-1 /20} \right]_{30}^{\infty } \\[1ex] & = e^{-\frac{30}{20}} = 0.2231. \end{align*}